These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20822209)

  • 1. Goal-directed aiming: two components but multiple processes.
    Elliott D; Hansen S; Grierson LE; Lyons J; Bennett SJ; Hayes SJ
    Psychol Bull; 2010 Nov; 136(6):1023-44. PubMed ID: 20822209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimising speed and energy expenditure in accurate visually directed upper limb movements.
    Elliott D; Hansen S; Grierson LE
    Ergonomics; 2009 Apr; 52(4):438-47. PubMed ID: 19401895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to optimize speed, accuracy, and energy expenditure: a framework for understanding speed-accuracy relations in goal-directed aiming.
    Elliott D; Hansen S; Mendoza J; Tremblay L
    J Mot Behav; 2004 Sep; 36(3):339-51. PubMed ID: 15262629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel model of motor learning capable of developing an optimal movement control law online from scratch.
    Shimansky YP; Kang T; He J
    Biol Cybern; 2004 Feb; 90(2):133-45. PubMed ID: 14999480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action representations in perception, motor control and learning: implications for medical education.
    Elliott D; Grierson LE; Hayes SJ; Lyons J
    Med Educ; 2011 Feb; 45(2):119-31. PubMed ID: 21166837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of multiple movement representations with practice: specificity versus flexibility.
    Soucy MC; Proteau L
    J Mot Behav; 2001 Sep; 33(3):243-54. PubMed ID: 11495829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effector mass and trajectory optimization in the online regulation of goal-directed movement.
    Burkitt JJ; Staite V; Yeung A; Elliott D; Lyons JL
    Exp Brain Res; 2015 Apr; 233(4):1097-107. PubMed ID: 25567091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The multiple process model of goal-directed aiming/reaching: insights on limb control from various special populations.
    Elliott D; Lyons J; Hayes SJ; Burkitt JJ; Hansen S; Grierson LEM; Foster NC; Roberts JW; Bennett SJ
    Exp Brain Res; 2020 Dec; 238(12):2685-2699. PubMed ID: 33079207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drifting towards a diffuse control model of exploratory motor learning: A comparison of global and within-trial performance measures.
    Kadar EE; Maxwell JP; Stins J; Costall A
    Biol Cybern; 2002 Jul; 87(1):1-9. PubMed ID: 12111264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feedforward impedance control efficiently reduce motor variability.
    Osu R; Morishige K; Miyamoto H; Kawato M
    Neurosci Res; 2009 Sep; 65(1):6-10. PubMed ID: 19523999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted aiming movements are compromised in nonaffected limb of persons with stroke.
    Ketcham CJ; Rodriguez TM; Zihlman KA
    Neurorehabil Neural Repair; 2007; 21(5):388-97. PubMed ID: 17369510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mosaic model for sensorimotor learning and control.
    Haruno M; Wolpert DM; Kawato M
    Neural Comput; 2001 Oct; 13(10):2201-20. PubMed ID: 11570996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual illusions affect both movement planning and on-line control: a multiple cue position on bias and goal-directed action.
    Mendoza J; Hansen S; Glazebrook CM; Keetch KM; Elliott D
    Hum Mov Sci; 2005; 24(5-6):760-73. PubMed ID: 16223538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of peripheral and central vision in the control of movement amplitude.
    Lawrence GP; Khan MA; Buckolz E; Oldham AR
    Hum Mov Sci; 2006 Jun; 25(3):326-38. PubMed ID: 16616964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor learning without doing: trial-by-trial improvement in motor performance during mental training.
    Gentili R; Han CE; Schweighofer N; Papaxanthis C
    J Neurophysiol; 2010 Aug; 104(2):774-83. PubMed ID: 20538766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor learning is optimally tuned to the properties of motor noise.
    van Beers RJ
    Neuron; 2009 Aug; 63(3):406-17. PubMed ID: 19679079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time scales of adaptive behavior and motor learning in the presence of stochastic perturbations.
    Schöllhorn WI; Mayer-Kress G; Newell KM; Michelbrink M
    Hum Mov Sci; 2009 Jun; 28(3):319-33. PubMed ID: 19062119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The multiple process model of goal-directed reaching revisited.
    Elliott D; Lyons J; Hayes SJ; Burkitt JJ; Roberts JW; Grierson LE; Hansen S; Bennett SJ
    Neurosci Biobehav Rev; 2017 Jan; 72():95-110. PubMed ID: 27894830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1/f scaling in movement time changes with practice in precision aiming.
    Wijnants ML; Bosman AM; Hasselman F; Cox RF; Van Orden GC
    Nonlinear Dynamics Psychol Life Sci; 2009 Jan; 13(1):79-98. PubMed ID: 19061546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dynamic model for action understanding and goal-directed imitation.
    Erlhagen W; Mukovskiy A; Bicho E
    Brain Res; 2006 Apr; 1083(1):174-88. PubMed ID: 16616516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.