These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 20822209)

  • 21. Learning and generation of goal-directed arm reaching from scratch.
    Kambara H; Kim K; Shin D; Sato M; Koike Y
    Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A scientific paradigm for consciousness: a theory of premotor relations.
    Vakalopoulos C
    Med Hypotheses; 2005; 65(4):766-84. PubMed ID: 15953692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Goal-directed imitation: the means to an end.
    Hayes SJ; Ashford D; Bennett SJ
    Acta Psychol (Amst); 2008 Feb; 127(2):407-15. PubMed ID: 17880901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Schema-based learning of adaptable and flexible prey-catching in anurans I. The basic architecture.
    Corbacho F; Nishikawa KC; Weerasuriya A; Liaw JS; Arbib MA
    Biol Cybern; 2005 Dec; 93(6):391-409. PubMed ID: 16292659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A joint-centred model accounts for movement curvature and spatial variability.
    Magescas F; Prablanc C
    Neurosci Lett; 2006 Jul; 403(1-2):114-8. PubMed ID: 16709442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A century later: Woodworth's (1899) two-component model of goal-directed aiming.
    Elliott D; Helsen WF; Chua R
    Psychol Bull; 2001 May; 127(3):342-57. PubMed ID: 11393300
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Learning implicitly: effects of task and severity after stroke.
    Boyd LA; Quaney BM; Pohl PS; Winstein CJ
    Neurorehabil Neural Repair; 2007; 21(5):444-54. PubMed ID: 17416874
    [No Abstract]   [Full Text] [Related]  

  • 28. Goal-directed aiming and the relative contribution of two online control processes.
    Grierson LE; Elliott D
    Am J Psychol; 2009; 122(3):309-24. PubMed ID: 19827701
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple motor learning experiences enhance motor adaptability.
    Seidler RD
    J Cogn Neurosci; 2004; 16(1):65-73. PubMed ID: 15006037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Failure of motor learning for large initial errors.
    Sanger TD
    Neural Comput; 2004 Sep; 16(9):1873-86. PubMed ID: 15265326
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Practice effects in three-dimensional sequential rapid aiming in Parkinson's disease.
    Smiley-Oyen AL; Worringham CJ; Cross CL
    Mov Disord; 2002 Nov; 17(6):1196-204. PubMed ID: 12465057
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inferring online and offline processing of visual feedback in target-directed movements from kinematic data.
    Khan MA; Franks IM; Elliott D; Lawrence GP; Chua R; Bernier PM; Hansen S; Weeks DJ
    Neurosci Biobehav Rev; 2006; 30(8):1106-21. PubMed ID: 16839604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of motor imagery on intermanual transfer: a near-infrared spectroscopy and behavioural study.
    Amemiya K; Ishizu T; Ayabe T; Kojima S
    Brain Res; 2010 Jul; 1343():93-103. PubMed ID: 20423702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinematic analysis of goal-directed aims made against early and late perturbations: an investigation of the relative influence of two online control processes.
    Grierson LE; Elliott D
    Hum Mov Sci; 2008 Dec; 27(6):839-56. PubMed ID: 18768232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Task difficulty and the time scales of warm-up and motor learning.
    Joseph ME; King AC; Newell KM
    J Mot Behav; 2013; 45(3):231-8. PubMed ID: 23611248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An integrate-and-fire model of prefrontal cortex neuronal activity during performance of goal-directed decision making.
    Koene RA; Hasselmo ME
    Cereb Cortex; 2005 Dec; 15(12):1964-81. PubMed ID: 15858166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perceptual-motor skill learning in Gilles de la Tourette syndrome. Evidence for multiple procedural learning and memory systems.
    Marsh R; Alexander GM; Packard MG; Zhu H; Peterson BS
    Neuropsychologia; 2005; 43(10):1456-65. PubMed ID: 15989936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.
    Davidson PR; Jones RD; Andreae JH; Sirisena HR
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1242-52. PubMed ID: 12450354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The BUMP model of response planning: intermittent predictive control accounts for 10 Hz physiological tremor.
    Bye RT; Neilson PD
    Hum Mov Sci; 2010 Oct; 29(5):713-36. PubMed ID: 20674054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.