These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 2082247)

  • 1. Oxygen-dependent lactate utilization by Actinomyces viscosus and Actinomyces naeslundii.
    van der Hoeven JS; van den Kieboom CW
    Oral Microbiol Immunol; 1990 Aug; 5(4):223-5. PubMed ID: 2082247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catabolic pathway for aerobic degradation of lactate by Actinomyces naeslundii.
    Takahashi N; Yamada T
    Oral Microbiol Immunol; 1996 Jun; 11(3):193-8. PubMed ID: 8941775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose and lactate metabolism by Actinomyces naeslundii.
    Takahashi N; Yamada T
    Crit Rev Oral Biol Med; 1999; 10(4):487-503. PubMed ID: 10634585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pH on the glucose and lactate metabolisms by the washed cells of Actinomyces naeslundii under anaerobic and aerobic conditions.
    Takahashi N; Yamada T
    Oral Microbiol Immunol; 1999 Feb; 14(1):60-5. PubMed ID: 10204482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycogen synthetic and degradative activities by Actinomyces viscosus and Actinomyces naeslundii of root surface caries and noncaries sites.
    Komiyama K; Khandelwal RL; Heinrich SE
    Caries Res; 1988; 22(4):217-25. PubMed ID: 3165713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the succinate pathway in sorbitol fermentation by oral Actinomyces viscosus and Actinomyces naeslundii.
    Takahashi N; Kalfas S; Yamada T
    Oral Microbiol Immunol; 1994 Aug; 9(4):218-23. PubMed ID: 7478761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of nitrate on fermentation pattern, molar growth yields and synthesis of cytochrome b in Propionibacterium pentosaceum.
    Van Gent-Ruijters ML; DeVries W; Southamer AH
    J Gen Microbiol; 1975 May; 88(1):36-48. PubMed ID: 168306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial catabolism of sorbitol in Actinomyces naeslundii and Actinomyces viscosus.
    Kalfas S; Takahashi N; Yamada T
    Oral Microbiol Immunol; 1994 Dec; 9(6):372-5. PubMed ID: 7870473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycogen synthetic abilities of Actinomyces viscosus and Actinomyces naeslundii freshly isolated from dental plaque over root surface caries lesions and non-carious sites.
    Komiyama K; Khandelwal RL; Duncan DE
    J Dent Res; 1986 Jun; 65(6):899-902. PubMed ID: 3458740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of oxygen on Propionibacterium shermanii grown in continuous culture.
    Pritchard GG; Wimpenny JW; Morris HA; Lewis MW; Hughes DE
    J Gen Microbiol; 1977 Oct; 102(2):223-33. PubMed ID: 925678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose degradation, molar growth yields, and evidence for oxidative phosphorylation in Streptococcus agalactiae.
    Mickelson MN
    J Bacteriol; 1972 Jan; 109(1):96-105. PubMed ID: 4550679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbohydrate metabolism by Actinomyces viscosus growing in continuous culture.
    Hamilton IR; Ellwood DC
    Infect Immun; 1983 Oct; 42(1):19-26. PubMed ID: 6618664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune labeling of certain strains of Actinomyces naeslundii and Actinomyces viscosus by fluorescence and electron microscopy.
    Lai CH; Listgarten MA
    Infect Immun; 1979 Sep; 25(3):1016-28. PubMed ID: 387589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Path of glucose breakdown and cell yields of a facultative anaerobe, Actinomyces naeslundii.
    Buchanan BB; Pine L
    J Gen Microbiol; 1967 Feb; 46(2):225-36. PubMed ID: 6029732
    [No Abstract]   [Full Text] [Related]  

  • 15. Lactate metabolism in Propionibacterium pentosaceum growing with nitrate or oxygen as hydrogen acceptor.
    Gent-Ruijters ML; Meijere FA; Vries W; Stouthamer AH
    Antonie Van Leeuwenhoek; 1976; 42(3):217-28. PubMed ID: 1086638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cultured retinal neuronal cells and Müller cells both show net production of lactate.
    Winkler BS; Starnes CA; Sauer MW; Firouzgan Z; Chen SC
    Neurochem Int; 2004; 45(2-3):311-20. PubMed ID: 15145547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulation of carbohydrate metabolism in Klebsiella aerogenes NCTC 418 organisms, growing in chemostat culture.
    Neijssel OM; Tempest DW
    Arch Microbiol; 1975 Dec; 106(3):251-8. PubMed ID: 766718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactate dehydrogenases in cyanobacteria.
    Sanchez JJ; Palleroni NJ; Doudoroff M
    Arch Microbiol; 1975 Jun; 104(1):57-65. PubMed ID: 168830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant.
    Wallace BJ; Young IG
    Biochim Biophys Acta; 1977 Jul; 461(1):84-100. PubMed ID: 195602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the efficiency of oxidative phosphorylation in continuous cultures of Aerobacter aerogenes.
    Stouthamer AH; Bettenhaussen CW
    Arch Microbiol; 1975 Mar; 102(3):187-92. PubMed ID: 1156084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.