These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Inverse enzyme isotope effects in human purine nucleoside phosphorylase with heavy asparagine labels. Harijan RK; Zoi I; Antoniou D; Schwartz SD; Schramm VL Proc Natl Acad Sci U S A; 2018 Jul; 115(27):E6209-E6216. PubMed ID: 29915028 [TBL] [Abstract][Full Text] [Related]
4. Neighboring group participation in the transition state of human purine nucleoside phosphorylase. Murkin AS; Birck MR; Rinaldo-Matthis A; Shi W; Taylor EA; Almo SC; Schramm VL Biochemistry; 2007 May; 46(17):5038-49. PubMed ID: 17407325 [TBL] [Abstract][Full Text] [Related]
5. Catalytic-site design for inverse heavy-enzyme isotope effects in human purine nucleoside phosphorylase. Harijan RK; Zoi I; Antoniou D; Schwartz SD; Schramm VL Proc Natl Acad Sci U S A; 2017 Jun; 114(25):6456-6461. PubMed ID: 28584087 [TBL] [Abstract][Full Text] [Related]
6. Enzymatic transition states and dynamic motion in barrier crossing. Schwartz SD; Schramm VL Nat Chem Biol; 2009 Aug; 5(8):551-8. PubMed ID: 19620996 [TBL] [Abstract][Full Text] [Related]
7. Enzymatic transition states and transition state analogues. Schramm VL Curr Opin Struct Biol; 2005 Dec; 15(6):604-13. PubMed ID: 16274984 [TBL] [Abstract][Full Text] [Related]
8. Perspectives on electrostatics and conformational motions in enzyme catalysis. Hanoian P; Liu CT; Hammes-Schiffer S; Benkovic S Acc Chem Res; 2015 Feb; 48(2):482-9. PubMed ID: 25565178 [TBL] [Abstract][Full Text] [Related]
9. Atomic detail of chemical transformation at the transition state of an enzymatic reaction. Saen-Oon S; Quaytman-Machleder S; Schramm VL; Schwartz SD Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16543-8. PubMed ID: 18946041 [TBL] [Abstract][Full Text] [Related]
10. Isotope-specific and amino acid-specific heavy atom substitutions alter barrier crossing in human purine nucleoside phosphorylase. Suarez J; Schramm VL Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11247-51. PubMed ID: 26305965 [TBL] [Abstract][Full Text] [Related]
11. Role of dynamics in enzyme catalysis: substantial versus semantic controversies. Kohen A Acc Chem Res; 2015 Feb; 48(2):466-73. PubMed ID: 25539442 [TBL] [Abstract][Full Text] [Related]
13. Remote mutations alter transition-state structure of human purine nucleoside phosphorylase. Luo M; Li L; Schramm VL Biochemistry; 2008 Feb; 47(8):2565-76. PubMed ID: 18281957 [TBL] [Abstract][Full Text] [Related]
14. Atomic motion in enzymatic reaction coordinates. Schramm VL; Shi W Curr Opin Struct Biol; 2001 Dec; 11(6):657-65. PubMed ID: 11751045 [TBL] [Abstract][Full Text] [Related]
15. The importance of ensemble averaging in enzyme kinetics. Masgrau L; Truhlar DG Acc Chem Res; 2015 Feb; 48(2):431-8. PubMed ID: 25539028 [TBL] [Abstract][Full Text] [Related]
16. Altered thermodynamics from remote mutations altering human toward bovine purine nucleoside phosphorylase. Ghanem M; Li L; Wing C; Schramm VL Biochemistry; 2008 Feb; 47(8):2559-64. PubMed ID: 18281956 [TBL] [Abstract][Full Text] [Related]
18. Atomic dissection of the hydrogen bond network for transition-state analogue binding to purine nucleoside phosphorylase. Kicska GA; Tyler PC; Evans GB; Furneaux RH; Shi W; Fedorov A; Lewandowicz A; Cahill SM; Almo SC; Schramm VL Biochemistry; 2002 Dec; 41(49):14489-98. PubMed ID: 12463747 [TBL] [Abstract][Full Text] [Related]
19. A compelling experimental test of the hypothesis that enzymes have evolved to enhance quantum mechanical tunneling in hydrogen transfer reactions: the beta-neopentylcobalamin system combined with prior adocobalamin data. Doll KM; Finke RG Inorg Chem; 2003 Aug; 42(16):4849-56. PubMed ID: 12895106 [TBL] [Abstract][Full Text] [Related]
20. Dynamically achieved active site precision in enzyme catalysis. Klinman JP Acc Chem Res; 2015 Feb; 48(2):449-56. PubMed ID: 25539048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]