These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 20823276)
1. Membrane raft-lysosome redox signalling platforms in coronary endothelial dysfunction induced by adipokine visfatin. Xia M; Zhang C; Boini KM; Thacker AM; Li PL Cardiovasc Res; 2011 Feb; 89(2):401-9. PubMed ID: 20823276 [TBL] [Abstract][Full Text] [Related]
2. Lysosomal targeting and trafficking of acid sphingomyelinase to lipid raft platforms in coronary endothelial cells. Jin S; Yi F; Zhang F; Poklis JL; Li PL Arterioscler Thromb Vasc Biol; 2008 Nov; 28(11):2056-62. PubMed ID: 18772496 [TBL] [Abstract][Full Text] [Related]
3. SNARE-mediated rapid lysosome fusion in membrane raft clustering and dysfunction of bovine coronary arterial endothelium. Han WQ; Xia M; Zhang C; Zhang F; Xu M; Li NJ; Li PL Am J Physiol Heart Circ Physiol; 2011 Nov; 301(5):H2028-37. PubMed ID: 21926345 [TBL] [Abstract][Full Text] [Related]
4. TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice. Li X; Han WQ; Boini KM; Xia M; Zhang Y; Li PL J Mol Med (Berl); 2013 Jan; 91(1):25-36. PubMed ID: 23108456 [TBL] [Abstract][Full Text] [Related]
5. Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells. Zhang AY; Yi F; Jin S; Xia M; Chen QZ; Gulbins E; Li PL Antioxid Redox Signal; 2007 Jul; 9(7):817-28. PubMed ID: 17508908 [TBL] [Abstract][Full Text] [Related]
6. Requirement of translocated lysosomal V1 H(+)-ATPase for activation of membrane acid sphingomyelinase and raft clustering in coronary endothelial cells. Xu M; Xia M; Li XX; Han WQ; Boini KM; Zhang F; Zhang Y; Ritter JK; Li PL Mol Biol Cell; 2012 Apr; 23(8):1546-57. PubMed ID: 22357614 [TBL] [Abstract][Full Text] [Related]
7. Lysosome-membrane fusion mediated superoxide production in hyperglycaemia-induced endothelial dysfunction. Bao JX; Chang H; Lv YG; Yu JW; Bai YG; Liu H; Cai Y; Wang L; Ma J; Chang YM PLoS One; 2012; 7(1):e30387. PubMed ID: 22253932 [TBL] [Abstract][Full Text] [Related]
8. Activation of membrane NADPH oxidase associated with lysosome-targeted acid sphingomyelinase in coronary endothelial cells. Bao JX; Jin S; Zhang F; Wang ZC; Li N; Li PL Antioxid Redox Signal; 2010 Mar; 12(6):703-12. PubMed ID: 19761405 [TBL] [Abstract][Full Text] [Related]
9. Attenuation by statins of membrane raft-redox signaling in coronary arterial endothelium. Wei YM; Li X; Xiong J; Abais JM; Xia M; Boini KM; Zhang Y; Li PL J Pharmacol Exp Ther; 2013 May; 345(2):170-9. PubMed ID: 23435541 [TBL] [Abstract][Full Text] [Related]
10. Lysosome fusion to the cell membrane is mediated by the dysferlin C2A domain in coronary arterial endothelial cells. Han WQ; Xia M; Xu M; Boini KM; Ritter JK; Li NJ; Li PL J Cell Sci; 2012 Mar; 125(Pt 5):1225-34. PubMed ID: 22349696 [TBL] [Abstract][Full Text] [Related]
11. Visfatin-induced lipid raft redox signaling platforms and dysfunction in glomerular endothelial cells. Boini KM; Zhang C; Xia M; Han WQ; Brimson C; Poklis JL; Li PL Biochim Biophys Acta; 2010 Dec; 1801(12):1294-304. PubMed ID: 20858552 [TBL] [Abstract][Full Text] [Related]
12. Triggering role of acid sphingomyelinase in endothelial lysosome-membrane fusion and dysfunction in coronary arteries. Bao JX; Xia M; Poklis JL; Han WQ; Brimson C; Li PL Am J Physiol Heart Circ Physiol; 2010 Mar; 298(3):H992-H1002. PubMed ID: 20061541 [TBL] [Abstract][Full Text] [Related]
13. Critical role of lipid raft redox signaling platforms in endostatin-induced coronary endothelial dysfunction. Jin S; Zhang Y; Yi F; Li PL Arterioscler Thromb Vasc Biol; 2008 Mar; 28(3):485-90. PubMed ID: 18162606 [TBL] [Abstract][Full Text] [Related]
14. Contribution of lysosomal vesicles to the formation of lipid raft redox signaling platforms in endothelial cells. Jin S; Yi F; Li PL Antioxid Redox Signal; 2007 Sep; 9(9):1417-26. PubMed ID: 17638544 [TBL] [Abstract][Full Text] [Related]
15. Contribution of membrane raft redox signalling to visfatin-induced inflammasome activation and podocyte injury. Koka S; Surineni S; Singh GB; Boini KM Aging (Albany NY); 2023 Nov; 15(22):12738-12748. PubMed ID: 38032896 [TBL] [Abstract][Full Text] [Related]
16. Redox signaling via lipid raft clustering in homocysteine-induced injury of podocytes. Zhang C; Hu JJ; Xia M; Boini KM; Brimson C; Li PL Biochim Biophys Acta; 2010 Apr; 1803(4):482-91. PubMed ID: 20036696 [TBL] [Abstract][Full Text] [Related]
17. Lipid raft clustering and redox signaling platform formation in coronary arterial endothelial cells. Zhang AY; Yi F; Zhang G; Gulbins E; Li PL Hypertension; 2006 Jan; 47(1):74-80. PubMed ID: 16344372 [TBL] [Abstract][Full Text] [Related]
18. Formation of lipid raft redox signalling platforms in glomerular endothelial cells: an early event of homocysteine-induced glomerular injury. Yi F; Jin S; Zhang F; Xia M; Bao JX; Hu J; Poklis JL; Li PL J Cell Mol Med; 2009 Sep; 13(9B):3303-14. PubMed ID: 20196779 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial redox plays a critical role in the paradoxical effects of NAPDH oxidase-derived ROS on coronary endothelium. Shafique E; Torina A; Reichert K; Colantuono B; Nur N; Zeeshan K; Ravichandran V; Liu Y; Feng J; Zeeshan K; Benjamin LE; Irani K; Harrington EO; Sellke FW; Abid MR Cardiovasc Res; 2017 Feb; 113(2):234-246. PubMed ID: 28088753 [TBL] [Abstract][Full Text] [Related]
20. Formation and function of ceramide-enriched membrane platforms with CD38 during M1-receptor stimulation in bovine coronary arterial myocytes. Jia SJ; Jin S; Zhang F; Yi F; Dewey WL; Li PL Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1743-52. PubMed ID: 18723763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]