These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 20823304)
1. Integrating genome assemblies with MAIA. Nijkamp J; Winterbach W; van den Broek M; Daran JM; Reinders M; de Ridder D Bioinformatics; 2010 Sep; 26(18):i433-9. PubMed ID: 20823304 [TBL] [Abstract][Full Text] [Related]
2. Nanopore sequencing enables near-complete de novo assembly of Saccharomyces cerevisiae reference strain CEN.PK113-7D. Salazar AN; Gorter de Vries AR; van den Broek M; Wijsman M; de la Torre Cortés P; Brickwedde A; Brouwers N; Daran JG; Abeel T FEMS Yeast Res; 2017 Nov; 17(7):. PubMed ID: 28961779 [TBL] [Abstract][Full Text] [Related]
3. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches. Cherukuri Y; Janga SC BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636 [TBL] [Abstract][Full Text] [Related]
4. AlignGraph: algorithm for secondary de novo genome assembly guided by closely related references. Bao E; Jiang T; Girke T Bioinformatics; 2014 Jun; 30(12):i319-i328. PubMed ID: 24932000 [TBL] [Abstract][Full Text] [Related]
5. The complex task of choosing a de novo assembly: lessons from fungal genomes. Gallo JE; Muñoz JF; Misas E; McEwen JG; Clay OK Comput Biol Chem; 2014 Dec; 53 Pt A():97-107. PubMed ID: 25262360 [TBL] [Abstract][Full Text] [Related]
6. A new strategy for better genome assembly from very short reads. Ji Y; Shi Y; Ding G; Li Y BMC Bioinformatics; 2011 Dec; 12():493. PubMed ID: 22208765 [TBL] [Abstract][Full Text] [Related]
7. Improving de novo sequence assembly using machine learning and comparative genomics for overlap correction. Palmer LE; Dejori M; Bolanos R; Fasulo D BMC Bioinformatics; 2010 Jan; 11():33. PubMed ID: 20078885 [TBL] [Abstract][Full Text] [Related]
8. De novo detection of copy number variation by co-assembly. Nijkamp JF; van den Broek MA; Geertman JM; Reinders MJ; Daran JM; de Ridder D Bioinformatics; 2012 Dec; 28(24):3195-202. PubMed ID: 23047563 [TBL] [Abstract][Full Text] [Related]
9. Integrative Meta-Assembly Pipeline (IMAP): Chromosome-level genome assembler combining multiple de novo assemblies. Song G; Lee J; Kim J; Kang S; Lee H; Kwon D; Lee D; Lang GI; Cherry JM; Kim J PLoS One; 2019; 14(8):e0221858. PubMed ID: 31454399 [TBL] [Abstract][Full Text] [Related]
10. dnAQET: a framework to compute a consolidated metric for benchmarking quality of de novo assemblies. Yavas G; Hong H; Xiao W BMC Genomics; 2019 Sep; 20(1):706. PubMed ID: 31510940 [TBL] [Abstract][Full Text] [Related]
11. De novo likelihood-based measures for comparing genome assemblies. Ghodsi M; Hill CM; Astrovskaya I; Lin H; Sommer DD; Koren S; Pop M BMC Res Notes; 2013 Aug; 6():334. PubMed ID: 23965294 [TBL] [Abstract][Full Text] [Related]
12. SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing. Dohm JC; Lottaz C; Borodina T; Himmelbauer H Genome Res; 2007 Nov; 17(11):1697-706. PubMed ID: 17908823 [TBL] [Abstract][Full Text] [Related]
13. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Nijkamp JF; van den Broek M; Datema E; de Kok S; Bosman L; Luttik MA; Daran-Lapujade P; Vongsangnak W; Nielsen J; Heijne WH; Klaassen P; Paddon CJ; Platt D; Kötter P; van Ham RC; Reinders MJ; Pronk JT; de Ridder D; Daran JM Microb Cell Fact; 2012 Mar; 11():36. PubMed ID: 22448915 [TBL] [Abstract][Full Text] [Related]
14. Assessment of de novo assemblers for draft genomes: a case study with fungal genomes. Abbas MM; Malluhi QM; Balakrishnan P BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S10. PubMed ID: 25521762 [TBL] [Abstract][Full Text] [Related]
15. CISA: contig integrator for sequence assembly of bacterial genomes. Lin SH; Liao YC PLoS One; 2013; 8(3):e60843. PubMed ID: 23556006 [TBL] [Abstract][Full Text] [Related]
16. De novo yeast genome assemblies from MinION, PacBio and MiSeq platforms. Giordano F; Aigrain L; Quail MA; Coupland P; Bonfield JK; Davies RM; Tischler G; Jackson DK; Keane TM; Li J; Yue JX; Liti G; Durbin R; Ning Z Sci Rep; 2017 Jun; 7(1):3935. PubMed ID: 28638050 [TBL] [Abstract][Full Text] [Related]
17. De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. Nowrousian M; Stajich JE; Chu M; Engh I; Espagne E; Halliday K; Kamerewerd J; Kempken F; Knab B; Kuo HC; Osiewacz HD; Pöggeler S; Read ND; Seiler S; Smith KM; Zickler D; Kück U; Freitag M PLoS Genet; 2010 Apr; 6(4):e1000891. PubMed ID: 20386741 [TBL] [Abstract][Full Text] [Related]
18. Toward almost closed genomes with GapFiller. Boetzer M; Pirovano W Genome Biol; 2012 Jun; 13(6):R56. PubMed ID: 22731987 [TBL] [Abstract][Full Text] [Related]
19. Novo&Stitch: accurate reconciliation of genome assemblies via optical maps. Pan W; Wanamaker SI; Ah-Fong AMV; Judelson HS; Lonardi S Bioinformatics; 2018 Jul; 34(13):i43-i51. PubMed ID: 29949964 [TBL] [Abstract][Full Text] [Related]
20. Optimization of de novo transcriptome assembly from next-generation sequencing data. Surget-Groba Y; Montoya-Burgos JI Genome Res; 2010 Oct; 20(10):1432-40. PubMed ID: 20693479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]