These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20823310)

  • 1. Vorescore--fold recognition improved by rescoring of protein structure models.
    Csaba G; Zimmer R
    Bioinformatics; 2010 Sep; 26(18):i474-81. PubMed ID: 20823310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DescFold: a web server for protein fold recognition.
    Yan RX; Si JN; Wang C; Zhang Z
    BMC Bioinformatics; 2009 Dec; 10():416. PubMed ID: 20003426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The utility of artificially evolved sequences in protein threading and fold recognition.
    Brylinski M
    J Theor Biol; 2013 Jul; 328():77-88. PubMed ID: 23542050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence comparison and protein structure prediction.
    Dunbrack RL
    Curr Opin Struct Biol; 2006 Jun; 16(3):374-84. PubMed ID: 16713709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vorolign--fast structural alignment using Voronoi contacts.
    Birzele F; Gewehr JE; Csaba G; Zimmer R
    Bioinformatics; 2007 Jan; 23(2):e205-11. PubMed ID: 17237093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein structure prediction of CASP5 comparative modeling and fold recognition targets using consensus alignment approach and 3D assessment.
    Ginalski K; Rychlewski L
    Proteins; 2003; 53 Suppl 6():410-7. PubMed ID: 14579329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LOMETS2: improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins.
    Zheng W; Zhang C; Wuyun Q; Pearce R; Li Y; Zhang Y
    Nucleic Acids Res; 2019 Jul; 47(W1):W429-W436. PubMed ID: 31081035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template based protein structure modeling by global optimization in CASP11.
    Joo K; Joung I; Lee SY; Kim JY; Cheng Q; Manavalan B; Joung JY; Heo S; Lee J; Nam M; Lee IH; Lee SJ; Lee J
    Proteins; 2016 Sep; 84 Suppl 1():221-32. PubMed ID: 26329522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High quality protein sequence alignment by combining structural profile prediction and profile alignment using SABER-TOOTH.
    Teichert F; Minning J; Bastolla U; Porto M
    BMC Bioinformatics; 2010 May; 11():251. PubMed ID: 20470364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein threading using PROSPECT: design and evaluation.
    Xu Y; Xu D
    Proteins; 2000 Aug; 40(3):343-54. PubMed ID: 10861926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arby: automatic protein structure prediction using profile-profile alignment and confidence measures.
    von Ohsen N; Sommer I; Zimmer R; Lengauer T
    Bioinformatics; 2004 Sep; 20(14):2228-35. PubMed ID: 15059818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fold recognition by predicted alignment accuracy.
    Xu J
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(2):157-65. PubMed ID: 17044180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A "FRankenstein's monster" approach to comparative modeling: merging the finest fragments of Fold-Recognition models and iterative model refinement aided by 3D structure evaluation.
    Kosinski J; Cymerman IA; Feder M; Kurowski MA; Sasin JM; Bujnicki JM
    Proteins; 2003; 53 Suppl 6():369-79. PubMed ID: 14579325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iterative sequence/secondary structure search for protein homologs: comparison with amino acid sequence alignments and application to fold recognition in genome databases.
    Wallqvist A; Fukunishi Y; Murphy LR; Fadel A; Levy RM
    Bioinformatics; 2000 Nov; 16(11):988-1002. PubMed ID: 11159310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the quality of twilight-zone alignments.
    Jaroszewski L; Rychlewski L; Godzik A
    Protein Sci; 2000 Aug; 9(8):1487-96. PubMed ID: 10975570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does inclusion of residue-residue contact information boost protein threading?
    Bhattacharya S; Bhattacharya D
    Proteins; 2019 Jul; 87(7):596-606. PubMed ID: 30882932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of profile-to-profile alignment parameters for one-dimensional threading.
    Gniewek P; Kolinski A; Gront D
    J Comput Biol; 2012 Jul; 19(7):879-86. PubMed ID: 22731622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein threading by PROSPECT: a prediction experiment in CASP3.
    Xu Y; Xu D; Crawford OH; Einstein ; Larimer F; Uberbacher E; Unseren MA; Zhang G
    Protein Eng; 1999 Nov; 12(11):899-907. PubMed ID: 10585495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple sequence threading: an analysis of alignment quality and stability.
    Taylor WR
    J Mol Biol; 1997 Jun; 269(5):902-43. PubMed ID: 9223650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.