These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20823313)

  • 21. The origins of modern proteomes.
    Kurland CG; Canbäck B; Berg OG
    Biochimie; 2007 Dec; 89(12):1454-63. PubMed ID: 17949885
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fold usage on genomes and protein fold evolution.
    Abeln S; Deane CM
    Proteins; 2005 Sep; 60(4):690-700. PubMed ID: 16001400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Loop fold nature of globular proteins.
    Berezovsky IN; Trifonov EN
    Protein Eng; 2001 Jun; 14(6):403-7. PubMed ID: 11477219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes.
    Burroughs AM; Allen KN; Dunaway-Mariano D; Aravind L
    J Mol Biol; 2006 Sep; 361(5):1003-34. PubMed ID: 16889794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From protein sequence space to elementary protein modules.
    Frenkel ZM; Trifonov EN
    Gene; 2008 Jan; 408(1-2):64-71. PubMed ID: 18022768
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards functional repertoire of the earliest proteins.
    Sobolevsky Y; Guimarães RC; Trifonov EN
    J Biomol Struct Dyn; 2013; 31(11):1293-300. PubMed ID: 23140233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular evolution before the origin of species.
    Davis BK
    Prog Biophys Mol Biol; 2002; 79(1-3):77-133. PubMed ID: 12225777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the evolution of protein folds: are similar motifs in different protein folds the result of convergence, insertion, or relics of an ancient peptide world?
    Lupas AN; Ponting CP; Russell RB
    J Struct Biol; 2001; 134(2-3):191-203. PubMed ID: 11551179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling.
    Engelen S; Trojan LA; Sacquin-Mora S; Lavery R; Carbone A
    PLoS Comput Biol; 2009 Jan; 5(1):e1000267. PubMed ID: 19165315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequence structure of van der Waals locks in proteins.
    Aharonovsky E; Trifonov EN
    J Biomol Struct Dyn; 2005 Apr; 22(5):545-53. PubMed ID: 15702926
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative mapping of sequence-based and structure-based protein domains.
    Zhang Y; Chandonia JM; Ding C; Holbrook SR
    BMC Bioinformatics; 2005 Mar; 6():77. PubMed ID: 15790427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comprehensive de novo structure prediction in a systems-biology context for the archaea Halobacterium sp. NRC-1.
    Bonneau R; Baliga NS; Deutsch EW; Shannon P; Hood L
    Genome Biol; 2004; 5(8):R52. PubMed ID: 15287974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolutionary patterns of retinal-binding pockets of type I rhodopsins and their functions.
    Adamian L; Ouyang Z; Tseng YY; Liang J
    Photochem Photobiol; 2006; 82(6):1426-35. PubMed ID: 16922602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Signature amino acids enable the archaeal L7Ae box C/D RNP core protein to recognize and bind the K-loop RNA motif.
    Gagnon KT; Zhang X; Qu G; Biswas S; Suryadi J; Brown BA; Maxwell ES
    RNA; 2010 Jan; 16(1):79-90. PubMed ID: 19926724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein structure and folding: a new start.
    Berezovsky IN; Trifonov EN
    J Biomol Struct Dyn; 2001 Dec; 19(3):397-403. PubMed ID: 11790139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional fingerprints of folds: evidence for correlated structure-function evolution.
    Shakhnovich BE; Dokholyan NV; DeLisi C; Shakhnovich EI
    J Mol Biol; 2003 Feb; 326(1):1-9. PubMed ID: 12547186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CrAgDb--a database of annotated chaperone repertoire in archaeal genomes.
    Rani S; Srivastava A; Kumar M; Goel M
    FEMS Microbiol Lett; 2016 Mar; 363(6):. PubMed ID: 26862144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of signal peptides in archaea.
    Bagos PG; Tsirigos KD; Plessas SK; Liakopoulos TD; Hamodrakas SJ
    Protein Eng Des Sel; 2009 Jan; 22(1):27-35. PubMed ID: 18988691
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein content of minimal and ancestral ribosome.
    Mushegian A
    RNA; 2005 Sep; 11(9):1400-6. PubMed ID: 16043494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and characterization of human archaemetzincin-1 and -2, two novel members of a family of metalloproteases widely distributed in Archaea.
    Díaz-Perales A; Quesada V; Peinado JR; Ugalde AP; Alvarez J; Suárez MF; Gomis-Rüth FX; López-Otín C
    J Biol Chem; 2005 Aug; 280(34):30367-75. PubMed ID: 15972818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.