These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 20823922)

  • 1. [Condensed DNA particles formed in PCR with plasmid DNA: electron microscopy study].
    Danilevich VN; Kadykov VA; Grishin EV
    Bioorg Khim; 2010; 36(4):535-46. PubMed ID: 20823922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Micro- and nanoparticles of condensed DNA formed in a PCR with yeast genomic DNA as a template. Electron microscopy data].
    Danilevich VN; Kadykov VA; Grishin EV
    Bioorg Khim; 2010; 36(3):375-86. PubMed ID: 20644592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structural peculiarities of condensed DNA micro- and nanoparticles formed in PCR.
    Danilevich VN; Artemov VV; Smith SS; Gainutdinov RV; Mulyukin AL
    J Biomol Struct Dyn; 2014 Dec; 32(12):1979-92. PubMed ID: 24256107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [New morphotypes of condensed DNA microparticles formed in PCR with KlenTaq- and Taq-polymerases and with plasmid DNAs as templates].
    Danilevich VN; Vasilenko EA; Pechnikova EV; Grishin EV
    Mikrobiologiia; 2012; 81(1):126-37. PubMed ID: 22629690
    [No Abstract]   [Full Text] [Related]  

  • 5. [Micro- And Nanoparticles Of Condensed DNA Produced During PCR With Taq-polymerase In Presence Of Plasmid Matrices].
    Danilevich VN; Vasilenko EA; Pechnikova EV; Sokolova OS; Grishin EV
    Mikrobiologiia; 2011; 80(3):411-23. PubMed ID: 21861380
    [No Abstract]   [Full Text] [Related]  

  • 6. Structural variability of DNA-containing Mg-pyrophosphate microparticles: optimized conditions to produce particles with desired size and morphology.
    Danilevich VN; Mulyukin AL; Machulin AV; Sorokin VV; Kozlov SA
    J Biomol Struct Dyn; 2019 Mar; 37(4):918-930. PubMed ID: 29457757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insight into formation of DNA-containing microparticles during PCR: the scaffolding role of magnesium pyrophosphate crystals.
    Danilevich VN; Machulin AV; Lipkin AV; Kulakovskaya TV; Smith SS; Mulyukin AL
    J Biomol Struct Dyn; 2016; 34(3):625-39. PubMed ID: 25891071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Microparticles from coupled DNA formed in the process of polymerase chain reaction].
    Danilevich VN; Barinova ES; Grishin EV
    Bioorg Khim; 2009; 35(2):226-38. PubMed ID: 19537174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-chain compaction of long duplex DNA by cationic nanoparticles: modes of interaction and comparison with chromatin.
    Zinchenko AA; Sakaue T; Araki S; Yoshikawa K; Baigl D
    J Phys Chem B; 2007 Mar; 111(11):3019-31. PubMed ID: 17388415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of different analytical methods for the characterization of non-spherical micro- and nanoparticles.
    Mathaes R; Winter G; Engert J; Besheer A
    Int J Pharm; 2013 Sep; 453(2):620-9. PubMed ID: 23727141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A systematic electron microscopic study on the uptake of barium sulphate nano-, submicro-, microparticles by bone marrow-derived phagocytosing cells.
    Sokolova V; Loza K; Knuschke T; Heinen-Weiler J; Jastrow H; Hasenberg M; Buer J; Westendorf AM; Gunzer M; Epple M
    Acta Biomater; 2018 Oct; 80():352-363. PubMed ID: 30240952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delivery of plasmid IGF-1 to chondrocytes via cationized gelatin nanoparticles.
    Xu X; Capito RM; Spector M
    J Biomed Mater Res A; 2008 Jan; 84(1):73-83. PubMed ID: 17600330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas-phase synthesis of solid state DNA nanoparticles stabilized by l-leucine.
    Raula J; Hanzlíková M; Rahikkala A; Hautala J; Kauppinen EI; Urtti A; Yliperttula M
    Int J Pharm; 2013 Feb; 444(1-2):155-61. PubMed ID: 23352859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Condensation of DNA by trivalent cations. 1. Effects of DNA length and topology on the size and shape of condensed particles.
    Arscott PG; Li AZ; Bloomfield VA
    Biopolymers; 1990; 30(5-6):619-30. PubMed ID: 2265233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfection of plasmid DNA by nanocarriers containing a gemini cationic lipid with an aromatic spacer or its monomeric counterpart.
    Martínez-Negro M; Barrán-Berdón AL; Aicart-Ramos C; Moyá ML; de Ilarduya CT; Aicart E; Junquera E
    Colloids Surf B Biointerfaces; 2018 Jan; 161():519-527. PubMed ID: 29128838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA delivery via cationic solid lipid nanoparticles (SLNs).
    Carrillo C; Sánchez-Hernández N; García-Montoya E; Pérez-Lozano P; Suñé-Negre JM; Ticó JR; Suñé C; Miñarro M
    Eur J Pharm Sci; 2013 May; 49(2):157-65. PubMed ID: 23454134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent organosilica micro- and nanoparticles with controllable size.
    Vogel R; Surawski PP; Littleton BN; Miller CR; Lawrie GA; Battersby BJ; Trau M
    J Colloid Interface Sci; 2007 Jun; 310(1):144-50. PubMed ID: 17335840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex formation between cationically modified gold nanoparticles and DNA: an atomic force microscopic study.
    Ganguli M; Babu JV; Maiti S
    Langmuir; 2004 Jun; 20(13):5165-70. PubMed ID: 15986644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular interactions and in vitro DNA transfection studies with poly(ethylene glycol)-modified gelatin nanoparticles.
    Kaul G; Amiji M
    J Pharm Sci; 2005 Jan; 94(1):184-98. PubMed ID: 15761942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure.
    Daban JR
    Micron; 2011 Dec; 42(8):733-50. PubMed ID: 21703860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.