These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 20824343)

  • 41. [Surgical management for preserving motor function in patients with gliomas near the primary motor cortex: usefulness of preoperative identification of motor cortex and intraoperative monitoring of motor evoked potentials].
    Ohue S; Kumon Y; Kohno K; Nagato S; Nakagawa K; Ohta S; Sakaki S; Kusunoki K
    No Shinkei Geka; 1998 Jul; 26(7):599-606. PubMed ID: 9666493
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combined motor and somatosensory evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in 17 consecutive procedures.
    Hyun SJ; Rhim SC
    Br J Neurosurg; 2009 Aug; 23(4):393-400. PubMed ID: 19637010
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments.
    Mei H; Thackston KA; Bercich RA; Jefferys JG; Irazoqui PP
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):775-785. PubMed ID: 27295647
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wireless in vivo voltammetric measurements of neurotransmitters in freely behaving rats.
    Crespi F
    Biosens Bioelectron; 2010 Jul; 25(11):2425-30. PubMed ID: 20430607
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved potential quality of intraoperative transcranial motor-evoked potentials by navigated electrode placement compared to the conventional ten-twenty system.
    Wagner A; Ille S; Liesenhoff C; Aftahy K; Meyer B; Krieg SM
    Neurosurg Rev; 2022 Feb; 45(1):585-593. PubMed ID: 34043110
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alarm criteria for motor-evoked potentials: what's wrong with the "presence-or-absence" approach?
    Calancie B; Molano MR
    Spine (Phila Pa 1976); 2008 Feb; 33(4):406-14. PubMed ID: 18277873
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intraoperative localization of functional regions in the sensorimotor cortex by neuronavigation and cortical mapping.
    Krombach GA; Spetzger U; Rohde V; Gilsbach JM
    Comput Aided Surg; 1998; 3(2):64-73. PubMed ID: 9784954
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A TinyOS-enabled MICA2-based wireless neural interface.
    Farshchi S; Nuyujukian PH; Pesterev A; Mody I; Judy JW
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1416-24. PubMed ID: 16830946
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intraoperative neurophysiologic spinal cord monitoring in thoracolumbar burst fractures.
    Castellon AT; Meves R; Avanzi O
    Spine (Phila Pa 1976); 2009 Nov; 34(24):2662-8. PubMed ID: 19910769
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biomedical signal acquisition with streaming wireless communication for recording evoked potentials.
    Thie J; Klistorner A; Graham SL
    Doc Ophthalmol; 2012 Oct; 125(2):149-59. PubMed ID: 22843193
    [TBL] [Abstract][Full Text] [Related]  

  • 52. What Can We Learn From Two Consecutive Cases? Droperidol May Abolish TcMEPs.
    Saponaro González Á; Pérez Lorensu PJ; Chaves Gómez S; Nodarse Medina JF; Torres Dios JÁ
    Turk J Anaesthesiol Reanim; 2017 Feb; 45(1):53-55. PubMed ID: 28377841
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Patient-centered care model in IONM: a review and commentary.
    Skinner S
    J Clin Neurophysiol; 2013 Apr; 30(2):204-9. PubMed ID: 23545772
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Foundations for evidence-based intraoperative neurophysiological monitoring.
    Howick J; Cohen BA; McCulloch P; Thompson M; Skinner SA
    Clin Neurophysiol; 2016 Jan; 127(1):81-90. PubMed ID: 26268581
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wireless physiological monitoring and ocular tracking: 3D calibration in a fully-immersive virtual health care environment.
    Zhang L; Chi YM; Edelstein E; Schulze J; Gramann K; Velasquez A; Cauwenberghs G; Macagno E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4464-7. PubMed ID: 21095772
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Machine Learning Application of Transcranial Motor-Evoked Potential to Predict Positive Functional Outcomes of Patients.
    Jamaludin MR; Lai KW; Chuah JH; Zaki MA; Hasikin K; Abd Razak NA; Dhanalakshmi S; Saw LB; Wu X
    Comput Intell Neurosci; 2022; 2022():2801663. PubMed ID: 35634043
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A small, light-weight, low-power, multichannel wireless neural recording microsystem.
    Borna A; Marzullob T; Gage G; Najafi K
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5413-6. PubMed ID: 19963909
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Baseplate for two-stage cranial mounting of BMI connectors.
    McMorland AJ; Velliste M
    J Neural Eng; 2013 Jun; 10(3):034001. PubMed ID: 23594571
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intraoperative neuromonitoring.
    Minahan RE
    Neurologist; 2002 Jul; 8(4):209-26. PubMed ID: 12803681
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A low noise remotely controllable wireless telemetry system for single-unit recording in rats navigating in a vertical maze.
    Chen HY; Wu JS; Hyland B; Lu XD; Chen JJ
    Med Biol Eng Comput; 2008 Aug; 46(8):833-9. PubMed ID: 18509686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.