BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 20824487)

  • 1. Biorefining of wood: combined production of ethanol and xylanase from waste fiber sludge.
    Cavka A; Alriksson B; Rose SH; van Zyl WH; Jönsson LJ
    J Ind Microbiol Biotechnol; 2011 Aug; 38(8):891-9. PubMed ID: 20824487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of cellulosic ethanol and enzyme from waste fiber sludge using SSF, recycling of hydrolytic enzymes and yeast, and recombinant cellulase-producing Aspergillus niger.
    Cavka A; Alriksson B; Rose SH; van Zyl WH; Jönsson LJ
    J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1191-200. PubMed ID: 24862324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain.
    Katahira S; Mizuike A; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of bacterial cellulose and enzyme from waste fiber sludge.
    Cavka A; Guo X; Tang SJ; Winestrand S; Jönsson LJ; Hong F
    Biotechnol Biofuels; 2013 Feb; 6(1):25. PubMed ID: 23414733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.
    Silva NL; Betancur GJ; Vasquez MP; Gomes Ede B; Pereira N
    Appl Biochem Biotechnol; 2011 Apr; 163(7):928-36. PubMed ID: 20890779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains.
    Sonderegger M; Jeppsson M; Larsson C; Gorwa-Grauslund MF; Boles E; Olsson L; Spencer-Martins I; Hahn-Hägerdal B; Sauer U
    Biotechnol Bioeng; 2004 Jul; 87(1):90-8. PubMed ID: 15211492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethanol production by Saccharomyces cerevisiae using lignocellulosic hydrolysate from Chrysanthemum waste degradation.
    Quevedo-Hidalgo B; Monsalve-Marín F; Narváez-Rincón PC; Pedroza-Rodríguez AM; Velásquez-Lozano ME
    World J Microbiol Biotechnol; 2013 Mar; 29(3):459-66. PubMed ID: 23117675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger.
    Alriksson B; Rose SH; van Zyl WH; Sjöde A; Nilvebrant NO; Jönsson LJ
    Appl Environ Microbiol; 2009 Apr; 75(8):2366-74. PubMed ID: 19251882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger beta-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes.
    La Grange DC; Pretorius IS; Claeyssens M; van Zyl WH
    Appl Environ Microbiol; 2001 Dec; 67(12):5512-9. PubMed ID: 11722900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol production from corn cob hydrolysates by Escherichia coli KO11.
    de Carvalho Lima KG; Takahashi CM; Alterthum F
    J Ind Microbiol Biotechnol; 2002 Sep; 29(3):124-8. PubMed ID: 12242633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.
    Ko JK; Um Y; Woo HM; Kim KH; Lee SM
    Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis.
    Yanase H; Miyawaki H; Sakurai M; Kawakami A; Matsumoto M; Haga K; Kojima M; Okamoto K
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1667-78. PubMed ID: 22573268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The potential in bioethanol production from waste fiber sludges in pulp mill-based biorefineries.
    Sjöde A; Alriksson B; Jönsson LJ; Nilvebrant NO
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):327-37. PubMed ID: 18478399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-expression of cellulase and xylanase genes in
    Xiao W; Li H; Xia W; Yang Y; Hu P; Zhou S; Hu Y; Liu X; Dai Y; Jiang Z
    Bioengineered; 2019 Dec; 10(1):513-521. PubMed ID: 31661645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone-butanol-ethanol fermentation.
    Yang M; Zhang J; Kuittinen S; Vepsäläinen J; Soininen P; Keinänen M; Pappinen A
    Bioresour Technol; 2015; 189():131-137. PubMed ID: 25879180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of Saccharomyces cerevisiae to utilize xylan as a sole carbohydrate source by co-expression of an endoxylanase, xylosidase and a bacterial xylose isomerase.
    Mert MJ; la Grange DC; Rose SH; van Zyl WH
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):431-40. PubMed ID: 26749525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetone, butanol and ethanol production from domestic organic waste by solventogenic clostridia.
    Claassen PA; Budde MA; López-Contreras AM
    J Mol Microbiol Biotechnol; 2000 Jan; 2(1):39-44. PubMed ID: 10937486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina.
    Stricker AR; Grosstessner-Hain K; Würleitner E; Mach RL
    Eukaryot Cell; 2006 Dec; 5(12):2128-37. PubMed ID: 17056741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation.
    Banerjee G; Car S; Liu T; Williams DL; Meza SL; Walton JD; Hodge DB
    Biotechnol Bioeng; 2012 Apr; 109(4):922-31. PubMed ID: 22125119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.