These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20824987)

  • 1. Cognitive demand of human sensorimotor performance during an extended space mission: a dual-task study.
    Bock O; Weigelt C; Bloomberg JJ
    Aviat Space Environ Med; 2010 Sep; 81(9):819-24. PubMed ID: 20824987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human sensorimotor coordination during spaceflight: an analysis of pointing and tracking responses during the "Neurolab" Space Shuttle mission.
    Bock O; Fowler B; Comfort D
    Aviat Space Environ Med; 2001 Oct; 72(10):877-83. PubMed ID: 11601550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impairments of manual tracking performance during spaceflight: more converging evidence from a 20-day space mission.
    Manzey D; Lorenz TB; Heuers H; Sangals J
    Ergonomics; 2000 May; 43(5):589-609. PubMed ID: 10877478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mental performance in extreme environments: results from a performance monitoring study during a 438-day spaceflight.
    Manzey D; Lorenz B; Poljakov V
    Ergonomics; 1998 Apr; 41(4):537-59. PubMed ID: 9557591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of finely graded forces in humans: effects of simulated weightlessness by water immersion.
    Dalecki M; Dräger T; Mierau A; Bock O
    Exp Brain Res; 2012 Apr; 218(1):41-7. PubMed ID: 22237940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of mental performance during spaceflight.
    Manzey D
    Aviat Space Environ Med; 2000 Sep; 71(9 Suppl):A69-75. PubMed ID: 10993313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perceptual-motor performance and associated kinematics in space.
    Fowler B; Meehan S; Singhal A
    Hum Factors; 2008 Dec; 50(6):879-92. PubMed ID: 19292011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Memory processes and motor control in extreme environments.
    Newman DJ; Lathan CE
    IEEE Trans Syst Man Cybern C Appl Rev; 1999 Aug; 29(3):387-94. PubMed ID: 11542391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-task performance in space: results from a single-case study during a short-term space mission.
    Manzey D; Lorenz B; Schiewe A; Finell G; Thiele G
    Hum Factors; 1995 Dec; 37(4):667-81. PubMed ID: 8851772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aiming performance during spaceflight: Individual adaptation to microgravity and the benefits of haptic support.
    Weber BM; Schätzle S; Stelzer M
    Appl Ergon; 2022 Sep; 103():103791. PubMed ID: 35588558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioral aspects of human adaptation to space: analyses of cognitive and psychomotor performance in space during an 8-day space mission.
    Manzey D; Lorenz B; Schiewe A; Finell G; Thiele G
    Clin Investig; 1993 Sep; 71(9):725-31. PubMed ID: 8241723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is dual-task performance necessarily impaired in space?
    Fowler B; Bock O; Comfort D
    Hum Factors; 2000; 42(2):318-26. PubMed ID: 11022887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensorimotor impairment and haptic support in microgravity.
    Weber B; Riecke C; Stulp F
    Exp Brain Res; 2021 Mar; 239(3):967-981. PubMed ID: 33464389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-task performance on an interactive human/computer space shuttle flight experiment.
    Newman DJ; Bussolari SR
    Biomed Sci Instrum; 1990; 26():213-25. PubMed ID: 2334770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensorimotor impairments during spaceflight: Trigger mechanisms and haptic assistance.
    Weber B; Stelzer M
    Front Neuroergon; 2022; 3():959894. PubMed ID: 38235445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensorimotor performance and computational demand during short-term exposure to microgravity.
    Bock O; Abeele S; Eversheim U
    Aviat Space Environ Med; 2003 Dec; 74(12):1256-62. PubMed ID: 14692468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Dual-Task Decrements After a Brief Period of Manual Tracking in Simulated Weightlessness by Water Submersion.
    Dalecki M; Steinberg F; Beurskens R
    Hum Factors; 2023 Sep; 65(6):1001-1013. PubMed ID: 34861791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in toe clearance during treadmill walking after long-duration spaceflight.
    Miller CA; Peters BT; Brady RR; Richards JR; Ploutz-Snyder RJ; Mulavara AP; Bloomberg JJ
    Aviat Space Environ Med; 2010 Oct; 81(10):919-28. PubMed ID: 20922883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impairments of manual tracking performance during spaceflight are associated with specific effects of microgravity on visuomotor transformations.
    Heuer H; Manzey D; Lorenz B; Sangals J
    Ergonomics; 2003 Jul; 46(9):920-34. PubMed ID: 12775489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.