These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 20825174)
1. Experimental evidence of the occurrence of intramolecular electron transfer in catalyzed 1,2-dioxetane decomposition. Ciscato LF; Bartoloni FH; Weiss D; Beckert R; Baader WJ J Org Chem; 2010 Oct; 75(19):6574-80. PubMed ID: 20825174 [TBL] [Abstract][Full Text] [Related]
2. Color modulation for intramolecular charge-transfer-induced chemiluminescence of 1,2-dioxetanes. Matsumoto M; Watanabe N; Hoshiya N; Ijuin HK Chem Rec; 2008; 8(4):213-28. PubMed ID: 18752319 [TBL] [Abstract][Full Text] [Related]
3. Substituent effects on the decomposition of chemiluminescent tricyclic aromatic dioxetanes. Sun CW; Chen SC; Fang TS Luminescence; 2014 Aug; 29(5):445-50. PubMed ID: 23934725 [TBL] [Abstract][Full Text] [Related]
4. Efficiency of electron transfer initiated chemiluminescence. Augusto FA; de Souza GA; de Souza JĂșnior SP; Khalid M; Baader WJ Photochem Photobiol; 2013; 89(6):1299-317. PubMed ID: 23711099 [TBL] [Abstract][Full Text] [Related]
5. Chemiluminescence of 1,2-dioxetane. Reaction mechanism uncovered. Vico LD; Liu YJ; Krogh JW; Lindh R J Phys Chem A; 2007 Aug; 111(32):8013-9. PubMed ID: 17636973 [TBL] [Abstract][Full Text] [Related]
6. Studies on the chemiexcitation step in peroxyoxalate chemiluminescence using steroid-substituted activators. Silva SM; Wagner K; Weiss D; Beckert R; Stevani CV; Baader WJ Luminescence; 2002; 17(6):362-9. PubMed ID: 12444589 [TBL] [Abstract][Full Text] [Related]
7. Solvent cage effects: basis of a general mechanism for efficient chemiluminescence. Bastos EL; da Silva SM; Baader WJ J Org Chem; 2013 May; 78(9):4432-9. PubMed ID: 23551289 [TBL] [Abstract][Full Text] [Related]
8. Crucial dependence of chemiluminescence efficiency on the syn/anti conformation for intramolecular charge-transfer-induced decomposition of bicyclic dioxetanes bearing an oxidoaryl group. Matsumoto M; Suzuki H; Watanabe N; Ijuin HK; Tanaka J; Tanaka C J Org Chem; 2011 Jun; 76(12):5006-17. PubMed ID: 21574649 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of 5-tert-butyl-1-(3-tert-butyldimethylsiloxy)phenyl-4,4-dimethyl-2,6,7-trioxabicyclo[3.2.0]heptanes and their fluoride-induced chemiluminescent decomposition: effect of a phenolic electron donor on the CIEEL decay rate in aprotic polar solvent. Matsumoto M; Ito Y; Murakami M; Watanabe N Luminescence; 2002; 17(5):305-12. PubMed ID: 12407669 [TBL] [Abstract][Full Text] [Related]
10. Chemiluminescence in autoxidation of phosphonate carbanions. Phospha-1,2-dioxetanes as the most likely high-energy intermediates. Motoyoshiya J; Ikeda T; Tsuboi S; Kusaura T; Takeuchi Y; Hayashi S; Yoshioka S; Takaguchi Y; Aoyama H J Org Chem; 2003 Jul; 68(15):5950-5. PubMed ID: 12868931 [TBL] [Abstract][Full Text] [Related]
11. Solvent viscosity influence on the chemiexcitation efficiency of inter and intramolecular chemiluminescence systems. Khalid M; Souza SP; Ciscato LF; Bartoloni FH; Baader WJ Photochem Photobiol Sci; 2015 Jul; 14(7):1296-305. PubMed ID: 26067192 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of thermally stable acylamino-substituted bicyclic dioxetanes and their base-induced chemiluminescent decomposition. Watanabe N; Sano Y; Suzuki H; Tanimura M; Ijuin HK; Matsumoto M J Org Chem; 2010 Sep; 75(17):5920-6. PubMed ID: 20681740 [TBL] [Abstract][Full Text] [Related]
13. Revision of singlet quantum yields in the catalyzed decomposition of cyclic peroxides. Almeida de Oliveira M; Bartoloni FH; Augusto FA; Ciscato LF; Bastos EL; Baader WJ J Org Chem; 2012 Dec; 77(23):10537-44. PubMed ID: 22852861 [TBL] [Abstract][Full Text] [Related]
14. Exploring the Structural Space of Chemiluminescent 1,2-Dioxetanes. Haris U; Lippert AR ACS Sens; 2023 Jan; 8(1):3-11. PubMed ID: 36574491 [TBL] [Abstract][Full Text] [Related]
15. Direct kinetic observation of the chemiexcitation step in peroxyoxalate chemiluminescence. Ciscato LF; Bartoloni FH; Bastos EL; Baader WJ J Org Chem; 2009 Dec; 74(23):8974-9. PubMed ID: 19711973 [TBL] [Abstract][Full Text] [Related]
16. Unusual luminescent properties of odd- and even-substituted naphthyl-derivatized dioxetanes. Edwards B; Sparks A; Voyta JC; Bronstein I J Biolumin Chemilumin; 1990; 5(1):1-4. PubMed ID: 2107659 [TBL] [Abstract][Full Text] [Related]
17. Chemiluminescence in molecular recognition: base-induced decomposition of optically active dioxetanes bearing a bisnaphthol moiety with a complex of optically active crown ether-potassium tert-butoxide. Matsumoto M; Hamaoka K; Takashima Y; Yokokawa M; Yamada K; Watanabe N; Ijuin HK Chem Commun (Camb); 2005 Feb; (6):808-10. PubMed ID: 15685346 [TBL] [Abstract][Full Text] [Related]
18. Chemiluminescence efficiency of catalyzed 1,2-dioxetanone decomposition determined by steric effects. Bartoloni FH; de Oliveira MA; Ciscato LF; Augusto FA; Bastos EL; Baader WJ J Org Chem; 2015 Apr; 80(8):3745-51. PubMed ID: 25831218 [TBL] [Abstract][Full Text] [Related]
19. Preparation and characterization of thermochemiluminescent acridine-containing 1,2-dioxetanes as promising ultrasensitive labels in bioanalysis. Di Fusco M; Quintavalla A; Trombini C; Lombardo M; Roda A; Guardigli M; Mirasoli M J Org Chem; 2013 Nov; 78(22):11238-46. PubMed ID: 24160842 [TBL] [Abstract][Full Text] [Related]
20. Evidence for the Formation of 1,2-Dioxetane as a High-Energy Intermediate and Possible Chemiexcitation Pathways in the Chemiluminescence of Lophine Peroxides. Boaro A; Reis RA; Silva CS; Melo DU; Pinto AGGC; Bartoloni FH J Org Chem; 2021 May; 86(9):6633-6647. PubMed ID: 33876635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]