These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 20825193)

  • 41. Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors.
    Du YP; Zhang YW; Sun LD; Yan CH
    Dalton Trans; 2009 Oct; (40):8574-81. PubMed ID: 19809734
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Shape-controlled conversion of beta-Sn nanocrystals into intermetallic M-Sn (M=Fe, Co, Ni, Pd) nanocrystals.
    Chou NH; Schaak RE
    J Am Chem Soc; 2007 Jun; 129(23):7339-45. PubMed ID: 17503817
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Shaping binary metal nanocrystals through epitaxial seeded growth.
    Habas SE; Lee H; Radmilovic V; Somorjai GA; Yang P
    Nat Mater; 2007 Sep; 6(9):692-7. PubMed ID: 17618289
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A quantitative study of chemical kinetics for the synthesis of doped oxide nanocrystals using FTIR.
    Zhang N; Wang X; Ye Z; Jin Y
    Sci Rep; 2014 Mar; 4():4353. PubMed ID: 24619066
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evolutionary shape control during colloidal quantum-dot growth.
    Nair PS; Fritz KP; Scholes GD
    Small; 2007 Mar; 3(3):481-7. PubMed ID: 17278166
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes.
    Jun YW; Choi JS; Cheon J
    Angew Chem Int Ed Engl; 2006 May; 45(21):3414-39. PubMed ID: 16642516
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Colloidal transition-metal-doped ZnO quantum dots.
    Radovanovic PV; Norberg NS; McNally KE; Gamelin DR
    J Am Chem Soc; 2002 Dec; 124(51):15192-3. PubMed ID: 12487592
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Shape-controlled synthesis of PbS nanocrystals via a simple one-step process.
    Wang Y; Tang A; Li K; Yang C; Wang M; Ye H; Hou Y; Teng F
    Langmuir; 2012 Nov; 28(47):16436-43. PubMed ID: 23126602
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Colloidal Approaches to Zinc Oxide Nanocrystals.
    van Embden J; Gross S; Kittilstved KR; Della Gaspera E
    Chem Rev; 2023 Jan; 123(1):271-326. PubMed ID: 36563316
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Morphology syntheses and properties of well-defined Prussian Blue nanocrystals by a facile solution approach.
    Shen X; Wu S; Liu Y; Wang K; Xu Z; Liu W
    J Colloid Interface Sci; 2009 Jan; 329(1):188-95. PubMed ID: 18950787
    [TBL] [Abstract][Full Text] [Related]  

  • 51. One-pot synthesis and self-assembly of colloidal copper(I) sulfide nanocrystals.
    Tang A; Qu S; Li K; Hou Y; Teng F; Cao J; Wang Y; Wang Z
    Nanotechnology; 2010 Jul; 21(28):285602. PubMed ID: 20562487
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Doping Cu in semiconductor nanocrystals: some old and some new physical insights.
    Srivastava BB; Jana S; Pradhan N
    J Am Chem Soc; 2011 Feb; 133(4):1007-1015. PubMed ID: 21186798
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carrier concentration dependent optical and electrical properties of Ga doped ZnO hexagonal nanocrystals.
    Saha M; Ghosh S; Ashok VD; De SK
    Phys Chem Chem Phys; 2015 Jun; 17(24):16067-79. PubMed ID: 26029747
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrical properties of aluminum-doped zinc oxide (AZO) nanoparticles synthesized by chemical vapor synthesis.
    Hartner S; Ali M; Schulz C; Winterer M; Wiggers H
    Nanotechnology; 2009 Nov; 20(44):445701. PubMed ID: 19801771
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of the erbium dopant architecture on the femtosecond relaxation dynamics of silicon nanocrystals.
    Samia AC; Lou Y; Burda C; Senter RA; Coffer JL
    J Chem Phys; 2004 May; 120(18):8716-23. PubMed ID: 15267802
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stable photogenerated carriers in magnetic semiconductor nanocrystals.
    Liu WK; Whitaker KM; Kittilstved KR; Gamelin DR
    J Am Chem Soc; 2006 Mar; 128(12):3910-1. PubMed ID: 16551089
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals.
    Yang Y; Chen O; Angerhofer A; Cao YC
    J Am Chem Soc; 2006 Sep; 128(38):12428-9. PubMed ID: 16984188
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of shape-controlled monodisperse wurtzite CuIn(x)Ga(1-x)S2 semiconductor nanocrystals with tunable band gap.
    Wang YH; Zhang X; Bao N; Lin B; Gupta A
    J Am Chem Soc; 2011 Jul; 133(29):11072-5. PubMed ID: 21702462
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis and stress relaxation of ZnO/Al-doped ZnO core-shell nanowires.
    Wang HB; Ma F; Li QQ; Dong CZ; Ma DY; Wang HT; Xu KW
    Nanoscale; 2013 Apr; 5(7):2857-63. PubMed ID: 23443575
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis and photocatalytic properties of multi-morphological AuCu3-ZnO hybrid nanocrystals.
    Zeng D; Chen Y; Peng J; Xie Q; Peng DL
    Nanotechnology; 2015 Oct; 26(41):415602. PubMed ID: 26390896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.