These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20825204)

  • 1. Geometry effect on the strain-induced self-rolling of semiconductor membranes.
    Chun IS; Challa A; Derickson B; Hsia KJ; Li X
    Nano Lett; 2010 Oct; 10(10):3927-32. PubMed ID: 20825204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision structural engineering of self-rolled-up 3D nanomembranes guided by transient quasi-static FEM modeling.
    Huang W; Koric S; Yu X; Hsia KJ; Li X
    Nano Lett; 2014 Nov; 14(11):6293-7. PubMed ID: 25300010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis and predictive engineering of self-rolling of nanomembranes under anisotropic mismatch strain.
    Chen C; Song P; Meng F; Li X; Liu X; Song J
    Nanotechnology; 2017 Dec; 28(48):485302. PubMed ID: 29048333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D hierarchical architectures based on self-rolled-up silicon nitride membranes.
    Froeter P; Yu X; Huang W; Du F; Li M; Chun I; Kim SH; Hsia KJ; Rogers JA; Li X
    Nanotechnology; 2013 Nov; 24(47):475301. PubMed ID: 24177590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Texture evolution and mechanical anisotropy of biomedical hot-rolled Co-Cr-Mo alloy.
    Mori M; Yamanaka K; Sato S; Chiba A
    J Mech Behav Biomed Mater; 2015 Nov; 51():205-14. PubMed ID: 26275483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of material anisotropy on the self-positioning of nanostructures.
    Nikishkov GP; Nishidate Y; Ohnishi T; Vaccaro PO
    Nanotechnology; 2006 Feb; 17(4):1128-33. PubMed ID: 21727392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rolling behavior of a micro-cylinder in adhesional contact.
    Saito S; Ochiai T; Yoshizawa F; Dao M
    Sci Rep; 2016 Sep; 6():34063. PubMed ID: 27677706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of magnetic helical microribbons made of nickel thin films sandwiched between silicon nitride layers for microswimming applications.
    Shojaeian M; Caldag HO; Bozkurt A; Yesilyurt S
    Nanotechnology; 2022 Oct; 34(1):. PubMed ID: 36166982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directional roll-up of nanomembranes mediated by wrinkling.
    Cendula P; Kiravittaya S; Mönch I; Schumann J; Schmidt OG
    Nano Lett; 2011 Jan; 11(1):236-40. PubMed ID: 21117702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-Mediated Shape Transformation of a Self-Rolling Nanocomposite Hydrogel Tube.
    Guo H; Zhang Q; Liu W; Nie Z
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13521-13528. PubMed ID: 32096403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic Rolling and Controlled Chirality of Nanocrystalline Diamond Nanomembranes toward Biomimetic Helical Frameworks.
    Tian Z; Huang W; Xu B; Li X; Mei Y
    Nano Lett; 2018 Jun; 18(6):3688-3694. PubMed ID: 29799209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of rolled-up GaAs nanotubes.
    Silva JCF; Dos Santos JD; Taft CA; Martins JBL; Longo E
    J Mol Model; 2017 Jul; 23(7):204. PubMed ID: 28623600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of High-Quality and Strain-Relaxed GeSn Microdisks by Integrating Selective Epitaxial Growth and Selective Wet Etching Methods.
    Zhu G; Liu T; Zhong Z; Yang X; Wang L; Jiang Z
    Nanoscale Res Lett; 2020 Jan; 15(1):18. PubMed ID: 31965340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-stable small diameter hybrid transition metal dichalcogenide nanotubes X-M-Y (X, Y = S, Se, Te; M = Mo, W, Nb, Ta): a computational study.
    Zhao W; Li Y; Duan W; Ding F
    Nanoscale; 2015 Aug; 7(32):13586-90. PubMed ID: 26206165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rolled-Up Nanotech: Illumination-Controlled Hydrofluoric Acid Etching of AlAs Sacrificial Layers.
    Costescu RM; Deneke C; Thurmer DJ; Schmidt OG
    Nanoscale Res Lett; 2009 Sep; 4(12):1463-8. PubMed ID: 20652125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable swelling and rolling of microgel membranes.
    Zhang L; Spears MW; Lyon LA
    Langmuir; 2014 Jul; 30(26):7628-34. PubMed ID: 24927510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of topological patterning on self-rolling of nanomembranes.
    Chen C; Song P; Meng F; Ou P; Liu X; Song J
    Nanotechnology; 2018 Aug; 29(34):345301. PubMed ID: 29848800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental realization of coexisting states of rolled-up and wrinkled nanomembranes by strain and etching control.
    Cendula P; Malachias A; Deneke Ch; Kiravittaya S; Schmidt OG
    Nanoscale; 2014 Nov; 6(23):14326-35. PubMed ID: 25325245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomechanical architecture of semiconductor nanomembranes.
    Huang M; Cavallo F; Liu F; Lagally MG
    Nanoscale; 2011 Jan; 3(1):96-120. PubMed ID: 21031195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro structuration of gaas surface by wet etching: towards a specific surface behavior.
    Bienaime A; Elie-Caille C; Leblois T
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6855-63. PubMed ID: 22962835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.