BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 20825227)

  • 1. Superhydrophilic surfaces via polymer-SiO2 nanocomposites.
    Dong H; Ye P; Zhong M; Pietrasik J; Drumright R; Matyjaszewski K
    Langmuir; 2010 Oct; 26(19):15567-73. PubMed ID: 20825227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonleaching antibacterial glass surfaces via "Grafting Onto": the effect of the number of quaternary ammonium groups on biocidal activity.
    Huang J; Koepsel RR; Murata H; Wu W; Lee SB; Kowalewski T; Russell AJ; Matyjaszewski K
    Langmuir; 2008 Jun; 24(13):6785-95. PubMed ID: 18517227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings.
    Cebeci FC; Wu Z; Zhai L; Cohen RE; Rubner MF
    Langmuir; 2006 Mar; 22(6):2856-62. PubMed ID: 16519495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings.
    Kou L; Gao C
    Nanoscale; 2011 Feb; 3(2):519-28. PubMed ID: 21109865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encapsulation of submicrometer-sized silica particles by a thin shell of poly(methyl methacrylate).
    Freris I; Cristofori D; Riello P; Benedetti A
    J Colloid Interface Sci; 2009 Mar; 331(2):351-5. PubMed ID: 19081575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles.
    Li X; Du X; He J
    Langmuir; 2010 Aug; 26(16):13528-34. PubMed ID: 20695600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ assembly of raspberry- and mulberry-like silica nanospheres toward antireflective and antifogging coatings.
    Li X; He J
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2204-11. PubMed ID: 22448848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of conjugated polymer-Ag@SiO2 hybrid fluorescent nanoparticles for application to cellular imaging.
    Tang F; He F; Cheng H; Li L
    Langmuir; 2010 Jul; 26(14):11774-8. PubMed ID: 20545370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization.
    Lee SB; Koepsel RR; Morley SW; Matyjaszewski K; Sun Y; Russell AJ
    Biomacromolecules; 2004; 5(3):877-82. PubMed ID: 15132676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Functional Antifogging/Antimicrobial Polymer Coating.
    Zhao J; Ma L; Millians W; Wu T; Ming W
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8737-42. PubMed ID: 26977525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates.
    Du Y; Luna LE; Tan WS; Rubner MF; Cohen RE
    ACS Nano; 2010 Jul; 4(7):4308-16. PubMed ID: 20536211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibacterial inorganic-organic hybrid coatings on stainless steel via consecutive surface-initiated atom transfer radical polymerization for biocorrosion prevention.
    Yuan SJ; Pehkonen SO; Ting YP; Neoh KG; Kang ET
    Langmuir; 2010 May; 26(9):6728-36. PubMed ID: 20000424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of triacetylcellulose-SiO2 nanocomposites by surface modification of silica nanoparticles.
    Kim YJ; Ha SW; Jeon SM; Yoo DW; Chun SH; Sohn BH; Lee JK
    Langmuir; 2010 May; 26(10):7555-60. PubMed ID: 20158173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocomposite silica/polyamine films prepared by a reactive layer-by-layer deposition.
    Laugel N; Hemmerlé J; Porcel C; Voegel JC; Schaaf P; Ball V
    Langmuir; 2007 Mar; 23(7):3706-11. PubMed ID: 17323985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional antireflection coatings based on novel hollow silica-silica nanocomposites.
    Zhang X; Lan P; Lu Y; Li J; Xu H; Zhang J; Lee Y; Rhee JY; Choy KL; Song W
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1415-23. PubMed ID: 24443948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchically structured superhydrophilic coatings fabricated by self-assembling raspberry-like silica nanospheres.
    Liu X; He J
    J Colloid Interface Sci; 2007 Oct; 314(1):341-5. PubMed ID: 17543324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influences of the transfer method and particle surface chemistry on the dispersion of nanoparticles in nanocomposites.
    Pravaz O; Droz B; Schurtenberger P; Dietsch H
    Nanoscale; 2012 Nov; 4(21):6856-62. PubMed ID: 23034718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superhydrophobic-superhydrophilic binary micropatterns by localized thermal treatment of polyhedral oligomeric silsesquioxane (POSS)-silica films.
    Schutzius TM; Bayer IS; Jursich GM; Das A; Megaridis CM
    Nanoscale; 2012 Sep; 4(17):5378-85. PubMed ID: 22820974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microemulsion processing of silica-polymer nanocomposites.
    Chow PY; Gan LM
    J Nanosci Nanotechnol; 2004; 4(1-2):197-202. PubMed ID: 15112567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.