BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20825685)

  • 21. Distribution and Evolution of Yersinia Leucine-Rich Repeat Proteins.
    Hu Y; Huang H; Hui X; Cheng X; White AP; Zhao Z; Wang Y
    Infect Immun; 2016 Aug; 84(8):2243-2254. PubMed ID: 27217422
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LRR domain folding: just put a cap on it!
    Truhlar SM; Komives EA
    Structure; 2008 May; 16(5):655-7. PubMed ID: 18462667
    [No Abstract]   [Full Text] [Related]  

  • 23. Identification of epitopes in Leptospira borgpetersenii leucine-rich repeat proteins.
    Nitipan S; Sritrakul T; Kunjantarachot A; Prapong S
    Infect Genet Evol; 2013 Mar; 14():46-57. PubMed ID: 23201041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro characterization of the cysteine-rich capping domains in a plant leucine rich repeat protein.
    Kolade OO; Bamford VA; Ancillo Anton G; Jones JD; Vera P; Hemmings AM
    Biochim Biophys Acta; 2006 Jun; 1764(6):1043-53. PubMed ID: 16713408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leucine-rich repeat (LRR) proteins: integrators of pattern recognition and signaling in immunity.
    Ng A; Xavier RJ
    Autophagy; 2011 Sep; 7(9):1082-4. PubMed ID: 21606681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellular recognition of tri-/di-palmitoylated peptides is independent from a domain encompassing the N-terminal seven leucine-rich repeat (LRR)/LRR-like motifs of TLR2.
    Meng G; Grabiec A; Vallon M; Ebe B; Hampel S; Bessler W; Wagner H; Kirschning CJ
    J Biol Chem; 2003 Oct; 278(41):39822-9. PubMed ID: 12860988
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A capping domain for LRR protein interaction modules.
    Ceulemans H; De Maeyer M; Stalmans W; Bollen M
    FEBS Lett; 1999 Aug; 456(3):349-51. PubMed ID: 10462041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification and localisation of the NB-LRR gene family within the potato genome.
    Jupe F; Pritchard L; Etherington GJ; Mackenzie K; Cock PJ; Wright F; Sharma SK; Bolser D; Bryan GJ; Jones JD; Hein I
    BMC Genomics; 2012 Feb; 13():75. PubMed ID: 22336098
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative structural analysis of the binding domain of follicle stimulating hormone receptor.
    Fan QR; Hendrickson WA
    Proteins; 2008 Jul; 72(1):393-401. PubMed ID: 18214954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural analysis of leucine-rich-repeat variants in proteins associated with human diseases.
    Matsushima N; Tachi N; Kuroki Y; Enkhbayar P; Osaki M; Kamiya M; Kretsinger RH
    Cell Mol Life Sci; 2005 Dec; 62(23):2771-91. PubMed ID: 16231091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unusual structural and functional features of TpLRR/BspA-like LRR proteins.
    Takkouche A; Qiu X; Sedova M; Jaroszewski L; Godzik A
    J Struct Biol; 2023 Sep; 215(3):108011. PubMed ID: 37562586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PIRLs: a novel class of plant intracellular leucine-rich repeat proteins.
    Forsthoefel NR; Cutler K; Port MD; Yamamoto T; Vernon DM
    Plant Cell Physiol; 2005 Jun; 46(6):913-22. PubMed ID: 15809230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling of the three-dimensional structure of proteins with the typical leucine-rich repeats.
    Kajava AV; Vassart G; Wodak SJ
    Structure; 1995 Sep; 3(9):867-77. PubMed ID: 8535781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Filamentous hemagglutinin of Bordetella pertussis. A bacterial adhesin formed as a 50-nm monomeric rigid rod based on a 19-residue repeat motif rich in beta strands and turns.
    Makhov AM; Hannah JH; Brennan MJ; Trus BL; Kocsis E; Conway JF; Wingfield PT; Simon MN; Steven AC
    J Mol Biol; 1994 Aug; 241(1):110-24. PubMed ID: 7519681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative Geometrical Analysis of Leucine-Rich Repeat Structures in the Nod-Like and Toll-Like Receptors in Vertebrate Innate Immunity.
    Matsushima N; Miyashita H; Enkhbayar P; Kretsinger RH
    Biomolecules; 2015 Aug; 5(3):1955-78. PubMed ID: 26295267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biochemical mapping of a ligand-binding domain within Arabidopsis BAM1 reveals diversified ligand recognition mechanisms of plant LRR-RKs.
    Shinohara H; Moriyama Y; Ohyama K; Matsubayashi Y
    Plant J; 2012 Jun; 70(5):845-54. PubMed ID: 22321211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The myosin-I-binding protein Acan125 binds the SH3 domain and belongs to the superfamily of leucine-rich repeat proteins.
    Xu P; Mitchelhill KI; Kobe B; Kemp BE; Zot HG
    Proc Natl Acad Sci U S A; 1997 Apr; 94(8):3685-90. PubMed ID: 9108038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conserved charged residues in the leucine-rich repeat domain of the Ran GTPase activating protein are required for Ran binding and GTPase activation.
    Haberland J; Gerke V
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):653-62. PubMed ID: 10527945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Leucine-rich repeats in host-pathogen interactions.
    Kedzierski Ł; Montgomery J; Curtis J; Handman E
    Arch Immunol Ther Exp (Warsz); 2004; 52(2):104-12. PubMed ID: 15179324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. LRR conservation mapping to predict functional sites within protein leucine-rich repeat domains.
    Helft L; Reddy V; Chen X; Koller T; Federici L; Fernández-Recio J; Gupta R; Bent A
    PLoS One; 2011; 6(7):e21614. PubMed ID: 21789174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.