These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20825941)

  • 1. Combined probabilistic and principal component analysis approach for multivariate sensitivity evaluation and application to implanted patellofemoral mechanics.
    Fitzpatrick CK; Baldwin MA; Rullkoetter PJ; Laz PJ
    J Biomech; 2011 Jan; 44(1):13-21. PubMed ID: 20825941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying alignment parameters affecting implanted patellofemoral mechanics.
    Fitzpatrick CK; Baldwin MA; Clary CW; Wright A; Laz PJ; Rullkoetter PJ
    J Orthop Res; 2012 Jul; 30(7):1167-75. PubMed ID: 22570224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a statistical shape model of the patellofemoral joint for investigating relationships between shape and function.
    Fitzpatrick CK; Baldwin MA; Laz PJ; FitzPatrick DP; Lerner AL; Rullkoetter PJ
    J Biomech; 2011 Sep; 44(13):2446-52. PubMed ID: 21803359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computationally efficient finite element evaluation of natural patellofemoral mechanics.
    Fitzpatrick CK; Baldwin MA; Rullkoetter PJ
    J Biomech Eng; 2010 Dec; 132(12):121013. PubMed ID: 21142327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probabilistic finite element prediction of knee wear simulator mechanics.
    Laz PJ; Pal S; Halloran JP; Petrella AJ; Rullkoetter PJ
    J Biomech; 2006; 39(12):2303-10. PubMed ID: 16185700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend.
    Baldwin MA; Clary C; Maletsky LP; Rullkoetter PJ
    J Biomech; 2009 Oct; 42(14):2341-8. PubMed ID: 19720376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-platform comparison of efficient probabilistic methods in the prediction of total knee replacement mechanics.
    Strickland MA; Arsene CT; Pal S; Laz PJ; Taylor M
    Comput Methods Biomech Biomed Engin; 2010 Dec; 13(6):701-9. PubMed ID: 20162473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational framework for population-based evaluation of TKR-implanted patellofemoral joint mechanics.
    Ali AA; Clary CW; Smoger LM; Dennis DA; Fitzpatrick CK; Rullkoetter PJ; Laz PJ
    Biomech Model Mechanobiol; 2020 Aug; 19(4):1309-1317. PubMed ID: 32020408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of patient, surgical, and implant design variation in total knee replacement performance.
    Fitzpatrick CK; Clary CW; Rullkoetter PJ
    J Biomech; 2012 Aug; 45(12):2092-102. PubMed ID: 22727219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explicit finite element modeling of total knee replacement mechanics.
    Halloran JP; Petrella AJ; Rullkoetter PJ
    J Biomech; 2005 Feb; 38(2):323-31. PubMed ID: 15598460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative contributions of design, alignment, and loading variability in knee replacement mechanics.
    Fitzpatrick CK; Clary CW; Laz PJ; Rullkoetter PJ
    J Orthop Res; 2012 Dec; 30(12):2015-24. PubMed ID: 22696429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A statistical finite element model of the knee accounting for shape and alignment variability.
    Rao C; Fitzpatrick CK; Rullkoetter PJ; Maletsky LP; Kim RH; Laz PJ
    Med Eng Phys; 2013 Oct; 35(10):1450-6. PubMed ID: 23647862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic finite element predictions of the human lower limb model in total knee replacement.
    Arsene CT; Gabrys B
    Med Eng Phys; 2013 Aug; 35(8):1116-32. PubMed ID: 23317551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probabilistic analysis of an uncemented total hip replacement.
    Dopico-González C; New AM; Browne M
    Med Eng Phys; 2009 May; 31(4):470-6. PubMed ID: 19217340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of knee simulator loading and alignment variability on predicted implant mechanics: a probabilistic study.
    Laz PJ; Pal S; Fields A; Petrella AJ; Rullkoetter PJ
    J Orthop Res; 2006 Dec; 24(12):2212-21. PubMed ID: 17004268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional surrogate contact modeling for computationally efficient dynamic simulation of total knee replacements.
    Lin YC; Haftka RT; Queipo NV; Fregly BJ
    J Biomech Eng; 2009 Apr; 131(4):041010. PubMed ID: 19275439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multivariate analysis of neuronal interactions in the generalized partial least squares framework: simulations and empirical studies.
    Lin FH; McIntosh AR; Agnew JA; Eden GF; Zeffiro TA; Belliveau JW
    Neuroimage; 2003 Oct; 20(2):625-42. PubMed ID: 14568440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of variability in anatomical landmark location on knee kinematic description.
    Morton NA; Maletsky LP; Pal S; Laz PJ
    J Orthop Res; 2007 Sep; 25(9):1221-30. PubMed ID: 17506082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in patellofemoral contact mechanics associated with patellofemoral pain syndrome.
    Connolly KD; Ronsky JL; Westover LM; Küpper JC; Frayne R
    J Biomech; 2009 Dec; 42(16):2802-7. PubMed ID: 19889417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Could passive knee laxity be related to active gait mechanics? An exploratory computational biomechanical study using probabilistic methods.
    Strickland MA; Browne M; Taylor M
    Comput Methods Biomech Biomed Engin; 2009 Dec; 12(6):709-20. PubMed ID: 19418316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.