These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 20826312)

  • 1. Gilgamesh is required for rutabaga-independent olfactory learning in Drosophila.
    Tan Y; Yu D; Pletting J; Davis RL
    Neuron; 2010 Sep; 67(5):810-20. PubMed ID: 20826312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A distinct set of Drosophila brain neurons required for neurofibromatosis type 1-dependent learning and memory.
    Buchanan ME; Davis RL
    J Neurosci; 2010 Jul; 30(30):10135-43. PubMed ID: 20668197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Null EPAC mutants reveal a sequential order of versatile cAMP effects during
    Richlitzki A; Latour P; Schwärzel M
    Learn Mem; 2017 May; 24(5):210-215. PubMed ID: 28416632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types.
    Blum AL; Li W; Cressy M; Dubnau J
    Curr Biol; 2009 Aug; 19(16):1341-50. PubMed ID: 19646879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles for Drosophila mushroom body neurons in olfactory learning and memory.
    Akalal DB; Wilson CF; Zong L; Tanaka NK; Ito K; Davis RL
    Learn Mem; 2006; 13(5):659-68. PubMed ID: 16980542
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Turrel O; Rabah Y; Plaçais PY; Goguel V; Preat T
    J Neurosci; 2020 May; 40(21):4219-4229. PubMed ID: 32303647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consolidated and labile odor memory are separately encoded within the Drosophila brain.
    Scheunemann L; Jost E; Richlitzki A; Day JP; Sebastian S; Thum AS; Efetova M; Davies SA; Schwärzel M
    J Neurosci; 2012 Nov; 32(48):17163-71. PubMed ID: 23197709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacogenetic rescue in time and space of the rutabaga memory impairment by using Gene-Switch.
    Mao Z; Roman G; Zong L; Davis RL
    Proc Natl Acad Sci U S A; 2004 Jan; 101(1):198-203. PubMed ID: 14684832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila.
    Séjourné J; Plaçais PY; Aso Y; Siwanowicz I; Trannoy S; Thoma V; Tedjakumala SR; Rubin GM; Tchénio P; Ito K; Isabel G; Tanimoto H; Preat T
    Nat Neurosci; 2011 Jun; 14(7):903-10. PubMed ID: 21685917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic AMP-dependent plasticity underlies rapid changes in odor coding associated with reward learning.
    Louis T; Stahl A; Boto T; Tomchik SM
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):E448-E457. PubMed ID: 29284750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PKA dynamics in a Drosophila learning center: coincidence detection by rutabaga adenylyl cyclase and spatial regulation by dunce phosphodiesterase.
    Gervasi N; Tchénio P; Preat T
    Neuron; 2010 Feb; 65(4):516-29. PubMed ID: 20188656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gamma neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila.
    Qin H; Cressy M; Li W; Coravos JS; Izzi SA; Dubnau J
    Curr Biol; 2012 Apr; 22(7):608-14. PubMed ID: 22425153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual role for the adaptor protein DRK in Drosophila olfactory learning and memory.
    Moressis A; Friedrich AR; Pavlopoulos E; Davis RL; Skoulakis EM
    J Neurosci; 2009 Feb; 29(8):2611-25. PubMed ID: 19244537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal rescue of memory dysfunction in Drosophila.
    McGuire SE; Le PT; Osborn AJ; Matsumoto K; Davis RL
    Science; 2003 Dec; 302(5651):1765-8. PubMed ID: 14657498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A late-phase, long-term memory trace forms in the γ neurons of Drosophila mushroom bodies after olfactory classical conditioning.
    Akalal DB; Yu D; Davis RL
    J Neurosci; 2010 Dec; 30(49):16699-708. PubMed ID: 21148009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G(o) signaling is required for Drosophila associative learning.
    Ferris J; Ge H; Liu L; Roman G
    Nat Neurosci; 2006 Aug; 9(8):1036-40. PubMed ID: 16845387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The propensity for consuming ethanol in Drosophila requires rutabaga adenylyl cyclase expression within mushroom body neurons.
    Xu S; Chan T; Shah V; Zhang S; Pletcher SD; Roman G
    Genes Brain Behav; 2012 Aug; 11(6):727-39. PubMed ID: 22624869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neurofibromatosis-1-regulated pathway is required for learning in Drosophila.
    Guo HF; Tong J; Hannan F; Luo L; Zhong Y
    Nature; 2000 Feb; 403(6772):895-8. PubMed ID: 10706287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Olfactory learning in Drosophila.
    Busto GU; Cervantes-Sandoval I; Davis RL
    Physiology (Bethesda); 2010 Dec; 25(6):338-46. PubMed ID: 21186278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Innate and learned odor-guided behaviors utilize distinct molecular signaling pathways in a shared dopaminergic circuit.
    Noyes NC; Davis RL
    Cell Rep; 2023 Feb; 42(2):112026. PubMed ID: 36701232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.