BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 20826472)

  • 1. Suction component in adhesion of mushroom-shaped microstructure.
    Heepe L; Varenberg M; Itovich Y; Gorb SN
    J R Soc Interface; 2011 Apr; 8(57):585-9. PubMed ID: 20826472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of counterface roughness on adhesion of mushroom-shaped microstructure.
    Kasem H; Varenberg M
    J R Soc Interface; 2013 Oct; 10(87):20130620. PubMed ID: 23925984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic mushroom-shaped fibrillar adhesive microstructure.
    Gorb S; Varenberg M; Peressadko A; Tuma J
    J R Soc Interface; 2007 Apr; 4(13):271-5. PubMed ID: 17251156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force.
    Varenberg M; Gorb S
    J R Soc Interface; 2007 Aug; 4(15):721-5. PubMed ID: 17327201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic wall-shaped hierarchical microstructure for gecko-like attachment.
    Kasem H; Tsipenyuk A; Varenberg M
    Soft Matter; 2015 Apr; 11(15):2909-15. PubMed ID: 25693519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A beetle-inspired solution for underwater adhesion.
    Varenberg M; Gorb S
    J R Soc Interface; 2008 Mar; 5(20):383-5. PubMed ID: 17848363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic wall-shaped adhesive microstructure for shear-induced attachment: the effects of pulling angle and preliminary displacement.
    Kim JK; Varenberg M
    J R Soc Interface; 2017 Dec; 14(137):. PubMed ID: 29237827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adhesion failure at 180,000 frames per second: direct observation of the detachment process of a mushroom-shaped adhesive.
    Heepe L; Kovalev AE; Filippov AE; Gorb SN
    Phys Rev Lett; 2013 Sep; 111(10):104301. PubMed ID: 25166671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.
    Purtov J; Frensemeier M; Kroner E
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24127-35. PubMed ID: 26457864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switchable Adhesion for Nonflat Surfaces Mimicking Geckos' Adhesive Structures and Toe Muscles.
    Li S; Tian H; Shao J; Liu H; Wang D; Zhang W
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39745-39755. PubMed ID: 32666785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse adhesion of a gecko-inspired synthetic adhesive switched by an ion-exchange polymer-metal composite actuator.
    Guo DJ; Liu R; Cheng Y; Zhang H; Zhou LM; Fang SM; Elliott WH; Tan W
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5480-7. PubMed ID: 25676143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.
    Li Y; Gates BD; Menon C
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16410-7. PubMed ID: 26167951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electro-dry-adhesion.
    Krahn J; Menon C
    Langmuir; 2012 Mar; 28(12):5438-43. PubMed ID: 22397643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Close-up of mushroom-shaped fibrillar adhesive microstructure: contact element behaviour.
    Varenberg M; Gorb S
    J R Soc Interface; 2008 Jul; 5(24):785-9. PubMed ID: 17939977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi.
    Baik S; Kim DW; Park Y; Lee TJ; Ho Bhang S; Pang C
    Nature; 2017 Jun; 546(7658):396-400. PubMed ID: 28617467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adhesion enhancement in a biomimetic fibrillar interface.
    Glassmaker NJ; Jagota A; Hui CY
    Acta Biomater; 2005 Jul; 1(4):367-75. PubMed ID: 16701818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Further Enhanced Dry Adhesive by the Combined Effect of the Microstructure and Surface Free-Energy Increase.
    Kizilkan E; Gorb SN
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26752-26758. PubMed ID: 30010312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of polymerization of polyvinyl siloxanes by medicaments used on gingival retraction cords.
    de Camargo LM; Chee WW; Donovan TE
    J Prosthet Dent; 1993 Aug; 70(2):114-7. PubMed ID: 8371173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of microcavitation in underwater adhesion of mushroom-shaped adhesive microstructure.
    Heepe L; Kovalev AE; Gorb SN
    Beilstein J Nanotechnol; 2014; 5():903-9. PubMed ID: 24991528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Static and dynamic evaluations of the wettability of commercial vinyl polysiloxane impression materials for artificial saliva.
    Luo F; Hong G; Wang T; Jia L; Chen JY; Suo L; Pei XB; Wan QB
    Dent Mater J; 2018 Sep; 37(5):818-824. PubMed ID: 29962413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.