BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 20826559)

  • 41. Targeting oncogenic and epigenetic survival pathways in lymphoma.
    Leslie LA; Younes A
    Leuk Lymphoma; 2013 Nov; 54(11):2365-76. PubMed ID: 23442067
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selective ATP-competitive inhibitors of TOR suppress rapamycin-insensitive function of TORC2 in Saccharomyces cerevisiae.
    Liu Q; Ren T; Fresques T; Oppliger W; Niles BJ; Hur W; Sabatini DM; Hall MN; Powers T; Gray NS
    ACS Chem Biol; 2012 Jun; 7(6):982-7. PubMed ID: 22496512
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Targeting the PI3K/AKT/mTOR Signaling Pathway in Primary Central Nervous System Lymphoma: Current Status and Future Prospects.
    Zhang X; Liu Y
    CNS Neurol Disord Drug Targets; 2020; 19(3):165-173. PubMed ID: 32416683
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The mammalian target of rapamycin pathway as a therapeutic target in multiple myeloma.
    Gera J; Lichtenstein A
    Leuk Lymphoma; 2011 Oct; 52(10):1857-66. PubMed ID: 21599581
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Focus issue: TOR signaling, a tale of two complexes.
    Gough NR
    Sci Signal; 2012 Mar; 5(217):eg4. PubMed ID: 22457327
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phosphoinositide 3-kinase inhibitors in lymphoma.
    Curran E; Smith SM
    Curr Opin Oncol; 2014 Sep; 26(5):469-75. PubMed ID: 25024054
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The PI3K/Akt pathway as a target in the treatment of hematologic malignancies.
    Kawauchi K; Ogasawara T; Yasuyama M; Otsuka K; Yamada O
    Anticancer Agents Med Chem; 2009 Jun; 9(5):550-9. PubMed ID: 19519296
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Clinical activity of mammalian target of rapamycin inhibitors in solid tumors.
    Alvarado Y; Mita MM; Vemulapalli S; Mahalingam D; Mita AC
    Target Oncol; 2011 Jun; 6(2):69-94. PubMed ID: 21541789
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Therapeutic potential of targeting mTOR in T-cell acute lymphoblastic leukemia (review).
    Evangelisti C; Evangelisti C; Chiarini F; Lonetti A; Buontempo F; Bressanin D; Cappellini A; Orsini E; McCubrey JA; Martelli AM
    Int J Oncol; 2014 Sep; 45(3):909-18. PubMed ID: 24968804
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The two TORCs and Akt.
    Bhaskar PT; Hay N
    Dev Cell; 2007 Apr; 12(4):487-502. PubMed ID: 17419990
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Signal transduction inhibitor therapy for lymphoma.
    Witzig TE; Gupta M
    Hematology Am Soc Hematol Educ Program; 2010; 2010():265-70. PubMed ID: 21239804
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel drug therapies in myeloid leukemia.
    Horne GA; Kinstrie R; Copland M
    Pharm Pat Anal; 2015; 4(3):187-205. PubMed ID: 26030080
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The evolution of the TOR pathway and its role in cancer.
    Beauchamp EM; Platanias LC
    Oncogene; 2013 Aug; 32(34):3923-32. PubMed ID: 23246968
    [TBL] [Abstract][Full Text] [Related]  

  • 54. TORC2 Structure and Function.
    Gaubitz C; Prouteau M; Kusmider B; Loewith R
    Trends Biochem Sci; 2016 Jun; 41(6):532-545. PubMed ID: 27161823
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Zebrafish screen identifies novel compound with selective toxicity against leukemia.
    Ridges S; Heaton WL; Joshi D; Choi H; Eiring A; Batchelor L; Choudhry P; Manos EJ; Sofla H; Sanati A; Welborn S; Agarwal A; Spangrude GJ; Miles RR; Cox JE; Frazer JK; Deininger M; Balan K; Sigman M; Müschen M; Perova T; Johnson R; Montpellier B; Guidos CJ; Jones DA; Trede NS
    Blood; 2012 Jun; 119(24):5621-31. PubMed ID: 22490804
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Targeting mTOR for the treatment of B cell malignancies.
    Lee JS; Vo TT; Fruman DA
    Br J Clin Pharmacol; 2016 Nov; 82(5):1213-1228. PubMed ID: 26805380
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor.
    Janes MR; Limon JJ; So L; Chen J; Lim RJ; Chavez MA; Vu C; Lilly MB; Mallya S; Ong ST; Konopleva M; Martin MB; Ren P; Liu Y; Rommel C; Fruman DA
    Nat Med; 2010 Feb; 16(2):205-13. PubMed ID: 20072130
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Palomid 529, a novel small-molecule drug, is a TORC1/TORC2 inhibitor that reduces tumor growth, tumor angiogenesis, and vascular permeability.
    Xue Q; Hopkins B; Perruzzi C; Udayakumar D; Sherris D; Benjamin LE
    Cancer Res; 2008 Nov; 68(22):9551-7. PubMed ID: 19010932
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Emerging Role of PI3K Inhibitors in the Treatment of Hematological Malignancies: Preclinical Data and Clinical Progress to Date.
    Seiler T; Hutter G; Dreyling M
    Drugs; 2016 Apr; 76(6):639-46. PubMed ID: 27052260
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Advances in leukemia inhibitors targeting PI3K/AKT/mTOR pathway].
    Wang L; Chu Y; Cheng T; Yuan W
    Zhonghua Xue Ye Xue Za Zhi; 2015 Oct; 36(10):888-93. PubMed ID: 26477776
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.