BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20826703)

  • 1. Relationships between growth, growth response to nutrient supply, and ion content using a recombinant inbred line population in Arabidopsis.
    Prinzenberg AE; Barbier H; Salt DE; Stich B; Reymond M
    Plant Physiol; 2010 Nov; 154(3):1361-71. PubMed ID: 20826703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative trait locus analysis of growth-related traits in a new Arabidopsis recombinant inbred population.
    El-Lithy ME; Clerkx EJ; Ruys GJ; Koornneef M; Vreugdenhil D
    Plant Physiol; 2004 May; 135(1):444-58. PubMed ID: 15122039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relation among plant growth, carbohydrates and flowering time in the Arabidopsis Landsberg erecta x Kondara recombinant inbred line population.
    El-Lithy ME; Reymond M; Stich B; Koornneef M; Vreugdenhil D
    Plant Cell Environ; 2010 Aug; 33(8):1369-82. PubMed ID: 20374533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana.
    Diaz C; Saliba-Colombani V; Loudet O; Belluomo P; Moreau L; Daniel-Vedele F; Morot-Gaudry JF; Masclaux-Daubresse C
    Plant Cell Physiol; 2006 Jan; 47(1):74-83. PubMed ID: 16284408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis identifies quantitative trait loci controlling rosette mineral concentrations in Arabidopsis thaliana under drought.
    Ghandilyan A; Barboza L; Tisné S; Granier C; Reymond M; Koornneef M; Schat H; Aarts MGM
    New Phytol; 2009; 184(1):180-192. PubMed ID: 19656307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic architecture of variation in Arabidopsis thaliana rosettes.
    Morón-García O; Garzón-Martínez GA; Martínez-Martín MJP; Brook J; Corke FMK; Doonan JH; Camargo Rodríguez AV
    PLoS One; 2022; 17(2):e0263985. PubMed ID: 35171969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Keep on growing under drought: genetic and developmental bases of the response of rosette area using a recombinant inbred line population.
    Tisné S; Schmalenbach I; Reymond M; Dauzat M; Pervent M; Vile D; Granier C
    Plant Cell Environ; 2010 Nov; 33(11):1875-87. PubMed ID: 20545881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations.
    Waters BM; Grusak MA
    New Phytol; 2008; 179(4):1033-1047. PubMed ID: 18631293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined genetic and modeling approaches reveal that epidermal cell area and number in leaves are controlled by leaf and plant developmental processes in Arabidopsis.
    Tisné S; Reymond M; Vile D; Fabre J; Dauzat M; Koornneef M; Granier C
    Plant Physiol; 2008 Oct; 148(2):1117-27. PubMed ID: 18701672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genetic control of leaf and petal allometric variations in Arabidopsis thaliana.
    Li X; Zhang Y; Yang S; Wu C; Shao Q; Feng X
    BMC Plant Biol; 2020 Dec; 20(1):547. PubMed ID: 33287712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative trait loci analysis of leaf and plant longevity in Arabidopsis thaliana.
    Luquez VM; Sasal Y; Medrano M; Martín MI; Mujica M; Guiamét JJ
    J Exp Bot; 2006; 57(6):1363-72. PubMed ID: 16547126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complex genetic architecture of shoot growth natural variation in Arabidopsis thaliana.
    Marchadier E; Hanemian M; Tisné S; Bach L; Bazakos C; Gilbault E; Haddadi P; Virlouvet L; Loudet O
    PLoS Genet; 2019 Apr; 15(4):e1007954. PubMed ID: 31009456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetics of water use physiology in locally adapted Arabidopsis thaliana.
    Mojica JP; Mullen J; Lovell JT; Monroe JG; Paul JR; Oakley CG; McKay JK
    Plant Sci; 2016 Oct; 251():12-22. PubMed ID: 27593459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations.
    Jiang G; Zeng J; He Y
    Gene; 2014 Feb; 536(2):287-95. PubMed ID: 24361205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic mapping of natural variation in potassium concentrations in shoots of Arabidopsis thaliana.
    Harada H; Leigh RA
    J Exp Bot; 2006; 57(4):953-60. PubMed ID: 16488917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Hot QTL Locations for Potassium, Calcium, and Magnesium Nutrition and Agronomic Traits at Seedling and Maturity Stages of Wheat under Different Potassium Treatments.
    Shen X; Yuan Y; Zhang H; Guo Y; Zhao Y; Li S; Kong F
    Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31409015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation.
    Bentsink L; Yuan K; Koornneef M; Vreugdenhil D
    Theor Appl Genet; 2003 May; 106(7):1234-43. PubMed ID: 12748774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural variation for carbohydrate content in Arabidopsis. Interaction with complex traits dissected by quantitative genetics.
    Calenge F; Saliba-Colombani V; Mahieu S; Loudet O; Daniel-Vedele F; Krapp A
    Plant Physiol; 2006 Aug; 141(4):1630-43. PubMed ID: 16798941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of quantitative trait loci controlling high Calcium response in Arabidopsis thaliana.
    Li W; Duan H; Chen F; Wang Z; Huang X; Deng X; Liu Y
    PLoS One; 2014; 9(11):e112511. PubMed ID: 25401959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping quantitative trait loci associated with selenate tolerance in Arabidopsis thaliana.
    Zhang L; Byrne PF; Pilon-Smits EA
    New Phytol; 2006; 170(1):33-42. PubMed ID: 16539601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.