BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 20826762)

  • 1. Functional expression of SGLTs in rat brain.
    Yu AS; Hirayama BA; Timbol G; Liu J; Basarah E; Kepe V; Satyamurthy N; Huang SC; Wright EM; Barrio JR
    Am J Physiol Cell Physiol; 2010 Dec; 299(6):C1277-84. PubMed ID: 20826762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the physiological roles of SGLTs and GLUTs using positron emission tomography in mice.
    Sala-Rabanal M; Hirayama BA; Ghezzi C; Liu J; Huang SC; Kepe V; Koepsell H; Yu A; Powell DR; Thorens B; Wright EM; Barrio JR
    J Physiol; 2016 Aug; 594(15):4425-38. PubMed ID: 27018980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does 2-FDG PET Accurately Reflect Quantitative In Vivo Glucose Utilization?
    Barrio JR; Huang SC; Satyamurthy N; Scafoglio CS; Yu AS; Alavi A; Krohn KA
    J Nucl Med; 2020 Jun; 61(6):931-937. PubMed ID: 31676728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional distribution of SGLT activity in rat brain in vivo.
    Yu AS; Hirayama BA; Timbol G; Liu J; Diez-Sampedro A; Kepe V; Satyamurthy N; Huang SC; Wright EM; Barrio JR
    Am J Physiol Cell Physiol; 2013 Feb; 304(3):C240-7. PubMed ID: 23151803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium-glucose cotransporters: new targets of cancer therapy?
    Madunić IV; Madunić J; Breljak D; Karaica D; Sabolić I
    Arh Hig Rada Toksikol; 2018 Dec; 69(4):278-285. PubMed ID: 30864374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal absorption of glucose in mice as determined by positron emission tomography.
    Sala-Rabanal M; Ghezzi C; Hirayama BA; Kepe V; Liu J; Barrio JR; Wright EM
    J Physiol; 2018 Jul; 596(13):2473-2489. PubMed ID: 29707805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vivo Functional Assessment of Sodium-Glucose Cotransporters (SGLTs) Using [
    Matsusaka Y; Chen X; Arias-Loza P; Werner RA; Nose N; Sasaki T; Rowe SP; Pomper MG; Lapa C; Higuchi T
    Mol Imaging; 2022; 2022():4635171. PubMed ID: 35903251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positron emission tomography of sodium glucose cotransport activity in high grade astrocytomas.
    Kepe V; Scafoglio C; Liu J; Yong WH; Bergsneider M; Huang SC; Barrio JR; Wright EM
    J Neurooncol; 2018 Jul; 138(3):557-569. PubMed ID: 29525972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [(18)F]FDG is not transported by P-glycoprotein and breast cancer resistance protein at the rodent blood-brain barrier.
    Wanek T; Traxl A; Bankstahl JP; Bankstahl M; Sauberer M; Langer O; Kuntner C
    Nucl Med Biol; 2015 Jul; 42(7):585-9. PubMed ID: 25823393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional expression of sodium-glucose transporters in cancer.
    Scafoglio C; Hirayama BA; Kepe V; Liu J; Ghezzi C; Satyamurthy N; Moatamed NA; Huang J; Koepsell H; Barrio JR; Wright EM
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4111-9. PubMed ID: 26170283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of P-Glycoprotein Inhibition or Deficiency at the Blood-Brain Barrier on (18)F-2-Fluoro-2-Deoxy-D-glucose ( (18)F-FDG) Brain Kinetics.
    Tournier N; Saba W; Goutal S; Gervais P; Valette H; Scherrmann JM; Bottlaender M; Cisternino S
    AAPS J; 2015 May; 17(3):652-9. PubMed ID: 25716150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative assessment of cerebral glucose metabolic rates after blood-brain barrier disruption induced by focused ultrasound using FDG-MicroPET.
    Yang FY; Chang WY; Chen JC; Lee LC; Hung YS
    Neuroimage; 2014 Apr; 90():93-8. PubMed ID: 24368263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of SGLT expression and localization through Epac/PKA-dependent caveolin-1 and F-actin activation in renal proximal tubule cells.
    Lee YJ; Kim MO; Ryu JM; Han HJ
    Biochim Biophys Acta; 2012 Apr; 1823(4):971-82. PubMed ID: 22230192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose transport in brain - effect of inflammation.
    Jurcovicova J
    Endocr Regul; 2014 Jan; 48(1):35-48. PubMed ID: 24524374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biology of human sodium glucose transporters.
    Wright EM; Loo DD; Hirayama BA
    Physiol Rev; 2011 Apr; 91(2):733-94. PubMed ID: 21527736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the transcellular transport of FDG and D-glucose by the kidney epithelial cell line, LLC-PK1.
    Kobayashi M; Shikano N; Nishii R; Kiyono Y; Araki H; Nishi K; Oh M; Okudaira H; Ogura M; Yoshimoto M; Okazawa H; Fujibayashi Y; Kawai K
    Nucl Med Commun; 2010 Feb; 31(2):141-6. PubMed ID: 19949354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 6-Fluoro-6-deoxy-D-glucose as a tracer of glucose transport.
    Landau BR; Spring-Robinson CL; Muzic RF; Rachdaoui N; Rubin D; Berridge MS; Schumann WC; Chandramouli V; Kern TS; Ismail-Beigi F
    Am J Physiol Endocrinol Metab; 2007 Jul; 293(1):E237-45. PubMed ID: 17405828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of local cerebral glucose utilization by positron emission tomography: comparison of [18F]2-fluoro-2-deoxy-D-glucose and [18F]2-fluoro-2-deoxy-D-mannose in patients with focal brain lesions.
    Wienhard K; Pawlik G; Nebeling B; Rudolf J; Fink G; Hamacher K; Stöcklin G; Heiss WD
    J Cereb Blood Flow Metab; 1991 May; 11(3):485-91. PubMed ID: 2016357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamental limitations of [18F]2-deoxy-2-fluoro-D-glucose for assessing myocardial glucose uptake.
    Hariharan R; Bray M; Ganim R; Doenst T; Goodwin GW; Taegtmeyer H
    Circulation; 1995 May; 91(9):2435-44. PubMed ID: 7729031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatal mechanical asphyxia induces changes in energy utilization in the rat brain: An (18)F-FDG-PET study.
    Ma S; You S; Hao L; Zhang D; Quan L
    Leg Med (Tokyo); 2015 Jul; 17(4):239-44. PubMed ID: 25725531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.