These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 20826820)
1. Biochemical characterization of the transcriptional regulator BzdR from Azoarcus sp. CIB. Durante-Rodríguez G; Valderrama JA; Mancheño JM; Rivas G; Alfonso C; Arias-Palomo E; Llorca O; García JL; Díaz E; Carmona M J Biol Chem; 2010 Nov; 285(46):35694-705. PubMed ID: 20826820 [TBL] [Abstract][Full Text] [Related]
2. BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. Barragán MJ; Blázquez B; Zamarro MT; Mancheño JM; García JL; Díaz E; Carmona M J Biol Chem; 2005 Mar; 280(11):10683-94. PubMed ID: 15634675 [TBL] [Abstract][Full Text] [Related]
3. New insights into the BzdR-mediated transcriptional regulation of the anaerobic catabolism of benzoate in Azoarcus sp. CIB. Durante-Rodríguez G; Zamarro MT; García JL; Díaz E; Carmona M Microbiology (Reading); 2008 Jan; 154(Pt 1):306-316. PubMed ID: 18174149 [TBL] [Abstract][Full Text] [Related]
4. Further Insights into the Architecture of the Durante-Rodríguez G; Gutiérrez-Del-Arroyo P; Vélez M; Díaz E; Carmona M Genes (Basel); 2019 Jun; 10(7):. PubMed ID: 31252700 [TBL] [Abstract][Full Text] [Related]
5. The bzd gene cluster, coding for anaerobic benzoate catabolism, in Azoarcus sp. strain CIB. López Barragán MJ; Carmona M; Zamarro MT; Thiele B; Boll M; Fuchs G; García JL; Díaz E J Bacteriol; 2004 Sep; 186(17):5762-74. PubMed ID: 15317781 [TBL] [Abstract][Full Text] [Related]
6. Oxygen-dependent regulation of the central pathway for the anaerobic catabolism of aromatic compounds in Azoarcus sp. strain CIB. Durante-Rodríguez G; Zamarro MT; García JL; Díaz E; Carmona M J Bacteriol; 2006 Apr; 188(7):2343-54. PubMed ID: 16547020 [TBL] [Abstract][Full Text] [Related]
7. AccR is a master regulator involved in carbon catabolite repression of the anaerobic catabolism of aromatic compounds in Azoarcus sp. CIB. Valderrama JA; Shingler V; Carmona M; Díaz E J Biol Chem; 2014 Jan; 289(4):1892-904. PubMed ID: 24302740 [TBL] [Abstract][Full Text] [Related]
8. Bacterial degradation of benzoate: cross-regulation between aerobic and anaerobic pathways. Valderrama JA; Durante-Rodríguez G; Blázquez B; García JL; Carmona M; Díaz E J Biol Chem; 2012 Mar; 287(13):10494-10508. PubMed ID: 22303008 [TBL] [Abstract][Full Text] [Related]
9. Unraveling the specific regulation of the central pathway for anaerobic degradation of 3-methylbenzoate. Juárez JF; Liu H; Zamarro MT; McMahon S; Liu H; Naismith JH; Eberlein C; Boll M; Carmona M; Díaz E J Biol Chem; 2015 May; 290(19):12165-83. PubMed ID: 25795774 [TBL] [Abstract][Full Text] [Related]
10. Refactoring the λ phage lytic/lysogenic decision with a synthetic regulator. Durante-Rodríguez G; Mancheño JM; Díaz E; Carmona M Microbiologyopen; 2016 Aug; 5(4):575-81. PubMed ID: 26987659 [TBL] [Abstract][Full Text] [Related]
11. Identification of a missing link in the evolution of an enzyme into a transcriptional regulator. Durante-Rodríguez G; Mancheño JM; Rivas G; Alfonso C; García JL; Díaz E; Carmona M PLoS One; 2013; 8(3):e57518. PubMed ID: 23526945 [TBL] [Abstract][Full Text] [Related]
12. Identification and analysis of a glutaryl-CoA dehydrogenase-encoding gene and its cognate transcriptional regulator from Azoarcus sp. CIB. Blázquez B; Carmona M; García JL; Díaz E Environ Microbiol; 2008 Feb; 10(2):474-82. PubMed ID: 18177371 [TBL] [Abstract][Full Text] [Related]
13. Genes coding for a new pathway of aerobic benzoate metabolism in Azoarcus evansii. Gescher J; Zaar A; Mohamed M; Schägger H; Fuchs G J Bacteriol; 2002 Nov; 184(22):6301-15. PubMed ID: 12399500 [TBL] [Abstract][Full Text] [Related]
14. Enzymes involved in the anaerobic degradation of ortho-phthalate by the nitrate-reducing bacterium Azoarcus sp. strain PA01. Junghare M; Spiteller D; Schink B Environ Microbiol; 2016 Sep; 18(9):3175-88. PubMed ID: 27387486 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for the activation mechanism of the PlcR virulence regulator by the quorum-sensing signal peptide PapR. Grenha R; Slamti L; Nicaise M; Refes Y; Lereclus D; Nessler S Proc Natl Acad Sci U S A; 2013 Jan; 110(3):1047-52. PubMed ID: 23277548 [TBL] [Abstract][Full Text] [Related]
16. A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Valderrama JA; Gómez-Álvarez H; Martín-Moldes Z; Berbís MÁ; Cañada FJ; Durante-Rodríguez G; Díaz E mBio; 2019 Apr; 10(2):. PubMed ID: 30967457 [TBL] [Abstract][Full Text] [Related]
17. Aerobic benzoyl-CoA catabolic pathway in Azoarcus evansii: studies on the non-oxygenolytic ring cleavage enzyme. Gescher J; Eisenreich W; Wörth J; Bacher A; Fuchs G Mol Microbiol; 2005 Jun; 56(6):1586-600. PubMed ID: 15916608 [TBL] [Abstract][Full Text] [Related]
18. New enzymes involved in aerobic benzoate metabolism in Azoarcus evansii. Zaar A; Gescher J; Eisenreich W; Bacher A; Fuchs G Mol Microbiol; 2004 Oct; 54(1):223-38. PubMed ID: 15458418 [TBL] [Abstract][Full Text] [Related]
19. Hierarchical binding of the TodT response regulator to its multiple recognition sites at the tod pathway operon promoter. Lacal J; Guazzaroni ME; Busch A; Krell T; Ramos JL J Mol Biol; 2008 Feb; 376(2):325-37. PubMed ID: 18166197 [TBL] [Abstract][Full Text] [Related]
20. The activity of CouR, a MarR family transcriptional regulator, is modulated through a novel molecular mechanism. Otani H; Stogios PJ; Xu X; Nocek B; Li SN; Savchenko A; Eltis LD Nucleic Acids Res; 2016 Jan; 44(2):595-607. PubMed ID: 26400178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]