These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 20826820)
21. Aerobic benzoyl-coenzyme A (CoA) catabolic pathway in Azoarcus evansii: conversion of ring cleavage product by 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase. Gescher J; Ismail W; Olgeschläger E; Eisenreich W; Wörth J; Fuchs G J Bacteriol; 2006 Apr; 188(8):2919-27. PubMed ID: 16585753 [TBL] [Abstract][Full Text] [Related]
22. Structural insights into VirB-DNA complexes reveal mechanism of transcriptional activation of virulence genes. Gao X; Zou T; Mu Z; Qin B; Yang J; Waltersperger S; Wang M; Cui S; Jin Q Nucleic Acids Res; 2013 Dec; 41(22):10529-41. PubMed ID: 23985969 [TBL] [Abstract][Full Text] [Related]
23. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Matsuyama BY; Krasteva PV; Baraquet C; Harwood CS; Sondermann H; Navarro MV Proc Natl Acad Sci U S A; 2016 Jan; 113(2):E209-18. PubMed ID: 26712005 [TBL] [Abstract][Full Text] [Related]
24. Molecular dynamics simulation unveils the conformational flexibility of the interdomain linker in the bacterial transcriptional regulator GabR from Bacillus subtilis bound to pyridoxal 5'-phosphate. Milano T; Gulzar A; Narzi D; Guidoni L; Pascarella S PLoS One; 2017; 12(12):e0189270. PubMed ID: 29253008 [TBL] [Abstract][Full Text] [Related]
25. The FadR.DNA complex. Transcriptional control of fatty acid metabolism in Escherichia coli. Xu Y; Heath RJ; Li Z; Rock CO; White SW J Biol Chem; 2001 May; 276(20):17373-9. PubMed ID: 11279025 [TBL] [Abstract][Full Text] [Related]
26. Engineering a bzd cassette for the anaerobic bioconversion of aromatic compounds. Zamarro MT; Barragán MJL; Carmona M; García JL; Díaz E Microb Biotechnol; 2017 Nov; 10(6):1418-1425. PubMed ID: 28736925 [TBL] [Abstract][Full Text] [Related]
27. Characterization of the mbd cluster encoding the anaerobic 3-methylbenzoyl-CoA central pathway. Juárez JF; Zamarro MT; Eberlein C; Boll M; Carmona M; Díaz E Environ Microbiol; 2013 Jan; 15(1):148-66. PubMed ID: 22759228 [TBL] [Abstract][Full Text] [Related]
28. Structural and genomic DNA analysis of a putative transcription factor SCO5550 from Streptomyces coelicolor A3(2): regulating the expression of gene sco5551 as a transcriptional activator with a novel dimer shape. Hayashi T; Tanaka Y; Sakai N; Watanabe N; Tamura T; Tanaka I; Yao M Biochem Biophys Res Commun; 2013 May; 435(1):28-33. PubMed ID: 23618855 [TBL] [Abstract][Full Text] [Related]
29. Ligand-induced changes in the Streptomyces lividans TipAL protein imply an alternative mechanism of transcriptional activation for MerR-like proteins. Chiu ML; Viollier PH; Katoh T; Ramsden JJ; Thompson CJ Biochemistry; 2001 Oct; 40(43):12950-8. PubMed ID: 11669632 [TBL] [Abstract][Full Text] [Related]
30. Benzoyl-coenzyme A thioesterase of Azoarcus evansii: properties and function. Ismail W Arch Microbiol; 2008 Oct; 190(4):451-60. PubMed ID: 18542924 [TBL] [Abstract][Full Text] [Related]
31. Probing activation of the prokaryotic arginine transcriptional regulator using chimeric proteins. Holtham CA; Jumel K; Miller CM; Harding SE; Baumberg S; Stockley PG J Mol Biol; 1999 Jun; 289(4):707-27. PubMed ID: 10369757 [TBL] [Abstract][Full Text] [Related]
32. Characterization of MobR, the 3-hydroxybenzoate-responsive transcriptional regulator for the 3-hydroxybenzoate hydroxylase gene of Comamonas testosteroni KH122-3s. Hiromoto T; Matsue H; Yoshida M; Tanaka T; Higashibata H; Hosokawa K; Yamaguchi H; Fujiwara S J Mol Biol; 2006 Dec; 364(5):863-77. PubMed ID: 17046018 [TBL] [Abstract][Full Text] [Related]
33. Plasmid pIP501 encoded transcriptional repressor CopR: single amino acids involved in dimerization are also important for folding of the monomer. Steinmetzer K; Kuhn K; Behlke J; Golbik R; Brantl S Plasmid; 2002 May; 47(3):201-9. PubMed ID: 12151235 [TBL] [Abstract][Full Text] [Related]
34. Identification of a NifL-like protein in a diazotroph of the beta-subgroup of the Proteobacteria, Azoarcus sp. strain BH72. Egener T; Sarkar A; Martin DE; Reinhold-Hurek B Microbiology (Reading); 2002 Oct; 148(Pt 10):3203-3212. PubMed ID: 12368454 [TBL] [Abstract][Full Text] [Related]
35. The Azoarcus anaerobius 1,3-Dihydroxybenzene (Resorcinol) Anaerobic Degradation Pathway Is Controlled by the Coordinated Activity of Two Enhancer-Binding Proteins. Pacheco-Sánchez D; Molina-Fuentes Á; Marín P; Medina-Bellver JI; González-López Ó; Marqués S Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28258136 [TBL] [Abstract][Full Text] [Related]
36. Roles of effectors in XylS-dependent transcription activation: intramolecular domain derepression and DNA binding. Domínguez-Cuevas P; Marín P; Busby S; Ramos JL; Marqués S J Bacteriol; 2008 May; 190(9):3118-28. PubMed ID: 18296514 [TBL] [Abstract][Full Text] [Related]
37. Probing the Escherichia coli transcriptional activator MarA using alanine-scanning mutagenesis: residues important for DNA binding and activation. Gillette WK; Martin RG; Rosner JL J Mol Biol; 2000 Jun; 299(5):1245-55. PubMed ID: 10873449 [TBL] [Abstract][Full Text] [Related]
38. A new member of MocR/GabR-type PLP-binding regulator of D-alanyl-D-alanine ligase in Brevibacillus brevis. Takenaka T; Ito T; Miyahara I; Hemmi H; Yoshimura T FEBS J; 2015 Nov; 282(21):4201-17. PubMed ID: 26279274 [TBL] [Abstract][Full Text] [Related]
39. Antibiotic binding releases autoinhibition of the TipA multidrug-resistance transcriptional regulator. Jiang X; Zhang L; Teng M; Li X J Biol Chem; 2020 Dec; 295(51):17865-17876. PubMed ID: 33454020 [TBL] [Abstract][Full Text] [Related]
40. Crystal structure of the DNA-binding domain of the LysR-type transcriptional regulator CbnR in complex with a DNA fragment of the recognition-binding site in the promoter region. Koentjoro MP; Adachi N; Senda M; Ogawa N; Senda T FEBS J; 2018 Mar; 285(5):977-989. PubMed ID: 29323785 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]