These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2082703)

  • 1. Biochemical and histochemical adaptation to sprint training in young athletes.
    Cadefau J; Casademont J; Grau JM; Fernández J; Balaguer A; Vernet M; Cussó R; Urbano-Márquez A
    Acta Physiol Scand; 1990 Nov; 140(3):341-51. PubMed ID: 2082703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle.
    Parra J; Cadefau JA; Rodas G; Amigó N; Cussó R
    Acta Physiol Scand; 2000 Jun; 169(2):157-65. PubMed ID: 10848646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of summer intermission on skeletal muscle of adolescent soccer players.
    Amigó N; Cadefau JA; Ferrer I; Tarrados N; Cussó R
    J Sports Med Phys Fitness; 1998 Dec; 38(4):298-304. PubMed ID: 9973772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme adaptations of human skeletal muscle during bicycle short-sprint training and detraining.
    Linossier MT; Dormois D; Perier C; Frey J; Geyssant A; Denis C
    Acta Physiol Scand; 1997 Dec; 161(4):439-45. PubMed ID: 9429650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic muscle enzyme changes after interval training.
    Roberts AD; Billeter R; Howald H
    Int J Sports Med; 1982 Feb; 3(1):18-21. PubMed ID: 7068292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early muscular and metabolic adaptations to prolonged exercise training in humans.
    Green HJ; Jones S; Ball-Burnett ME; Smith D; Livesey J; Farrance BW
    J Appl Physiol (1985); 1991 May; 70(5):2032-8. PubMed ID: 1864784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of eccentric and concentric resistance training on skeletal muscle substrates, enzyme activities and capillary supply.
    Tesch PA; Thorsson A; Colliander EB
    Acta Physiol Scand; 1990 Dec; 140(4):575-80. PubMed ID: 2082717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering.
    Ross A; Leveritt M
    Sports Med; 2001; 31(15):1063-82. PubMed ID: 11735686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle fibre types and enzyme activities after training with local leg ischaemia in man.
    Esbjörnsson M; Jansson E; Sundberg CJ; Sylvén C; Eiken O; Nygren A; Kaijser L
    Acta Physiol Scand; 1993 Jul; 148(3):233-41. PubMed ID: 8213179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute and chronic responses of skeletal muscle to endurance and sprint exercise. A review.
    Abernethy PJ; Thayer R; Taylor AW
    Sports Med; 1990 Dec; 10(6):365-89. PubMed ID: 2291032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical adaptations to exercise: anaerobic metabolism.
    Gollnick PD; Hermansen L
    Exerc Sport Sci Rev; 1973; 1():1-43. PubMed ID: 4806373
    [No Abstract]   [Full Text] [Related]  

  • 12. Glycogen breakdown in different human muscle fibre types during exhaustive exercise of short duration.
    Vøllestad NK; Tabata I; Medbø JI
    Acta Physiol Scand; 1992 Feb; 144(2):135-41. PubMed ID: 1575047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle performance and enzymatic adaptations to sprint interval training.
    MacDougall JD; Hicks AL; MacDonald JR; McKelvie RS; Green HJ; Smith KM
    J Appl Physiol (1985); 1998 Jun; 84(6):2138-42. PubMed ID: 9609810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle adaptation to extreme endurance training in man.
    Jansson E; Kaijser L
    Acta Physiol Scand; 1977 Jul; 100(3):315-24. PubMed ID: 144412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ergometric and metabolic adaptation to a 5-s sprint training programme.
    Linossier MT; Denis C; Dormois D; Geyssant A; Lacour JR
    Eur J Appl Physiol Occup Physiol; 1993; 67(5):408-14. PubMed ID: 8299612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of training and 15-, 25-, and 42-km contests on the skeletal muscle content of adenine and guanine nucleotides, creatine phosphate, and glycogen.
    van der Vusse GJ; Janssen GM; Coumans WA; Kuipers H; Does RJ; ten Hoor F
    Int J Sports Med; 1989 Oct; 10 Suppl 3():S146-52. PubMed ID: 2599732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of training on the activity of five muscle enzymes studied on elite cross-country skiers.
    Evertsen F; Medbo JI; Jebens E; Gjøvaag TF
    Acta Physiol Scand; 1999 Nov; 167(3):247-57. PubMed ID: 10606827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inheritance of human skeletal muscle and anaerobic capacity adaptation to high-intensity intermittent training.
    Simoneau JA; Lortie G; Boulay MR; Marcotte M; Thibault MC; Bouchard C
    Int J Sports Med; 1986 Jun; 7(3):167-71. PubMed ID: 3733313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle metabolism during sprint exercise in man: influence of sprint training.
    Barnett C; Carey M; Proietto J; Cerin E; Febbraio MA; Jenkins D
    J Sci Med Sport; 2004 Sep; 7(3):314-22. PubMed ID: 15518296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical training in man. Skeletal muscle metabolism in relation to muscle morphology and running ability.
    Bylund AC; Bjurö T; Cederblad G; Holm J; Lundholm K; Sjöstroöm M; Angquist KA; Scherstén T
    Eur J Appl Physiol Occup Physiol; 1977 Mar; 36(3):151-69. PubMed ID: 323004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.