These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 2082708)

  • 21. Fatigue vs. shortening-induced deactivation in striated muscle.
    Edman KA
    Acta Physiol Scand; 1996 Mar; 156(3):183-92. PubMed ID: 8729678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Creatine kinase injection restores contractile function in creatine-kinase-deficient mouse skeletal muscle fibres.
    Dahlstedt AJ; Katz A; Tavi P; Westerblad H
    J Physiol; 2003 Mar; 547(Pt 2):395-403. PubMed ID: 12562893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The variation of characteristics of twitch and tetanic contractions with sarcomere length in isolated muscle fibres of the frog.
    Cecchi G; Colomo F; Lombardi V
    Arch Fisiol; 1979 Jun; 71(1-4):279-302. PubMed ID: 318017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Force generation induced by rapid temperature jumps in intact mammalian (rat) skeletal muscle fibres.
    Coupland ME; Ranatunga KW
    J Physiol; 2003 Apr; 548(Pt 2):439-49. PubMed ID: 12611915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vacuole formation in fatigued skeletal muscle fibres from frog and mouse: effects of extracellular lactate.
    Lännergren J; Bruton JD; Westerblad H
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):597-611. PubMed ID: 10922011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Myoplasmic Mg2+ concentration in Xenopus muscle fibres at rest, during fatigue and during metabolic blockade.
    Westerblad H; Allen DG
    Exp Physiol; 1992 Sep; 77(5):733-40. PubMed ID: 1418955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial function in intact skeletal muscle fibres of creatine kinase deficient mice.
    Bruton JD; Dahlstedt AJ; Abbate F; Westerblad H
    J Physiol; 2003 Oct; 552(Pt 2):393-402. PubMed ID: 14561823
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fatigue in frog skeletal muscle fibres and effects of methylxanthine derivatives.
    Khan AR; Bengtsson B
    Acta Physiol Scand; 1985 May; 124(1):35-41. PubMed ID: 3874523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The postnatal development of the inferior oblique muscle of the cat. II. Effects of repetitive stimulation on isometric tension responses.
    Lennerstrand G; Hanson J
    Acta Physiol Scand; 1978 Jun; 103(2):144-53. PubMed ID: 676766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different effects of verapamil and low calcium on repetitive contractile activity of frog fatigue-resistant and easily-fatigued muscle fibres.
    Lipská E; Radzyukevich T
    Gen Physiol Biophys; 1999 Jun; 18(2):139-53. PubMed ID: 10517289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of tonicity on tension and stiffness of tetanized skeletal muscle fibres of the frog.
    Månsson A
    Acta Physiol Scand; 1989 Jun; 136(2):205-16. PubMed ID: 2789465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Tetanic fatigue and proximate post-tetanic recuperation in sartorius and flexor carpi radialis muscles of the male frog. Effects of iodoacetic acid (author's transl)].
    Thibert P; Nicolet M
    J Physiol (Paris); 1976 Jan; 70(6):749-58. PubMed ID: 1083432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Factors modulating recovery rate after intermittent tetanic fatigue in atrophic soleus].
    Li H; Jiao B; Yu ZB
    Sheng Li Xue Bao; 2007 Jun; 59(3):369-74. PubMed ID: 17579795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial gradients of intracellular calcium in skeletal muscle during fatigue.
    Westerblad H; Lee JA; Lamb AG; Bolsover SR; Allen DG
    Pflugers Arch; 1990 Mar; 415(6):734-40. PubMed ID: 2336350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light scattering associated with tension changes in the short-range elastic component of resting frog's muscle.
    Flitney FW
    J Physiol; 1975 Jan; 244(1):1-14. PubMed ID: 1079049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Optical property changes during activity of myocardial trabeculae and skeletal muscle of Rana esculenta].
    Bourret RL
    C R Acad Hebd Seances Acad Sci D; 1975 Nov; 281(21):1625-8. PubMed ID: 815054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observation of Brillouin scattering from single muscle fibres.
    Berovic N; Thomas N; Thornhill RA; Vaughan JM
    Eur Biophys J; 1989; 17(2):69-74. PubMed ID: 2766999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of changes in single muscle fibre diameter in different solutions by diffraction studies.
    Hwang JC; Leung AF; Cheung YM
    Pflugers Arch; 1981 Apr; 390(1):70-2. PubMed ID: 7195553
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Examined the activation of central myofibrils during muscle fatigue caused by repeated short tetani.
    Allen D; Duty S; Westerblad H
    J Muscle Res Cell Motil; 1993 Oct; 14(5):543-5. PubMed ID: 8300850
    [No Abstract]   [Full Text] [Related]  

  • 40. Light diffraction intensity from muscle fibres in different osmotic solutions: measurement of equilibration time.
    Leung AF; Cheung YM; Hwang JC
    Pflugers Arch; 1989 Sep; 414(6):676-82. PubMed ID: 2813045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.