These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2082717)

  • 1. Effects of eccentric and concentric resistance training on skeletal muscle substrates, enzyme activities and capillary supply.
    Tesch PA; Thorsson A; Colliander EB
    Acta Physiol Scand; 1990 Dec; 140(4):575-80. PubMed ID: 2082717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of eccentric and concentric muscle actions in resistance training.
    Colliander EB; Tesch PA
    Acta Physiol Scand; 1990 Sep; 140(1):31-9. PubMed ID: 2275403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of eccentric actions on skeletal muscle adaptations to resistance training.
    Hather BM; Tesch PA; Buchanan P; Dudley GA
    Acta Physiol Scand; 1991 Oct; 143(2):177-85. PubMed ID: 1835816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of eccentric versus concentric training on thigh muscle strength and EMG.
    Seger JY; Thorstensson A
    Int J Sports Med; 2005; 26(1):45-52. PubMed ID: 15643534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses to eccentric and concentric resistance training in females and males.
    Colliander EB; Tesch PA
    Acta Physiol Scand; 1991 Feb; 141(2):149-56. PubMed ID: 2048403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of detraining following short term resistance training on eccentric and concentric muscle strength.
    Colliander EB; Tesch PA
    Acta Physiol Scand; 1992 Jan; 144(1):23-9. PubMed ID: 1595350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of short-term concentric vs. eccentric resistance training on single muscle fiber MHC distribution in humans.
    Raue U; Terpstra B; Williamson DL; Gallagher PM; Trappe SW
    Int J Sports Med; 2005 Jun; 26(5):339-43. PubMed ID: 15895315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific effects of eccentric and concentric training on muscle strength and morphology in humans.
    Seger JY; Arvidsson B; Thorstensson A
    Eur J Appl Physiol Occup Physiol; 1998 Dec; 79(1):49-57. PubMed ID: 10052660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Greater initial adaptations to submaximal muscle lengthening than maximal shortening.
    Hortobágyi T; Barrier J; Beard D; Braspennincx J; Koens P; Devita P; Dempsey L; Lambert J
    J Appl Physiol (1985); 1996 Oct; 81(4):1677-82. PubMed ID: 8904586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscular performance after concentric and eccentric exercise in trained men.
    Vikne H; Refsnes PE; Ekmark M; Medbø JI; Gundersen V; Gundersen K
    Med Sci Sports Exerc; 2006 Oct; 38(10):1770-81. PubMed ID: 17019299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential adaptations to eccentric versus conventional resistance training in older humans.
    Reeves ND; Maganaris CN; Longo S; Narici MV
    Exp Physiol; 2009 Jul; 94(7):825-33. PubMed ID: 19395657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central versus peripheral adaptations following eccentric resistance training.
    Pensini M; Martin A; Maffiuletti NA
    Int J Sports Med; 2002 Nov; 23(8):567-74. PubMed ID: 12439772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscular adaptation to concentric and eccentric exercise at equal power levels.
    Mayhew TP; Rothstein JM; Finucane SD; Lamb RL
    Med Sci Sports Exerc; 1995 Jun; 27(6):868-73. PubMed ID: 7658948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme activities and muscle strength after "sprint training" in man.
    Thorstensson A; Sjödin B; Karlsson J
    Acta Physiol Scand; 1975 Jul; 94(3):313-8. PubMed ID: 170792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indirect evidence of human skeletal muscle damage and collagen breakdown after eccentric muscle actions.
    Brown S; Day S; Donnelly A
    J Sports Sci; 1999 May; 17(5):397-402. PubMed ID: 10413267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity of dynamic muscle performance with strength training in elderly humans.
    Reeves ND; Maganaris CN; Narici MV
    Muscle Nerve; 2005 Mar; 31(3):355-64. PubMed ID: 15654690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle.
    Parra J; Cadefau JA; Rodas G; Amigó N; Cussó R
    Acta Physiol Scand; 2000 Jun; 169(2):157-65. PubMed ID: 10848646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strength after bouts of eccentric or concentric actions.
    Golden CL; Dudley GA
    Med Sci Sports Exerc; 1992 Aug; 24(8):926-33. PubMed ID: 1406179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and histochemical adaptation to sprint training in young athletes.
    Cadefau J; Casademont J; Grau JM; Fernández J; Balaguer A; Vernet M; Cussó R; Urbano-Márquez A
    Acta Physiol Scand; 1990 Nov; 140(3):341-51. PubMed ID: 2082703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EMG power spectrum and features of the superimposed M-wave during voluntary eccentric and concentric actions at different activation levels.
    Linnamo V; Strojnik V; Komi PV
    Eur J Appl Physiol; 2002 Apr; 86(6):534-40. PubMed ID: 11944102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.