These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 20827290)
21. Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the gulf of Mexico. Zhang CL; Huang Z; Cantu J; Pancost RD; Brigmon RL; Lyons TW; Sassen R Appl Environ Microbiol; 2005 Apr; 71(4):2106-12. PubMed ID: 15812044 [TBL] [Abstract][Full Text] [Related]
22. Microbial communities associated with phosphogenic sediments and phosphoclast-associated DNA of the Benguela upwelling system. Zoss R; Medina Ferrer F; Flood BE; Jones DS; Louw DC; Bailey J Geobiology; 2019 Jan; 17(1):76-90. PubMed ID: 30369004 [TBL] [Abstract][Full Text] [Related]
23. Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective. Filippelli GM Chemosphere; 2011 Aug; 84(6):759-66. PubMed ID: 21376366 [TBL] [Abstract][Full Text] [Related]
24. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Bailey JV; Joye SB; Kalanetra KM; Flood BE; Corsetti FA Nature; 2007 Jan; 445(7124):198-201. PubMed ID: 17183268 [TBL] [Abstract][Full Text] [Related]
25. Marine polyphosphate: a key player in geologic phosphorus sequestration. Diaz J; Ingall E; Benitez-Nelson C; Paterson D; de Jonge MD; McNulty I; Brandes JA Science; 2008 May; 320(5876):652-5. PubMed ID: 18451299 [TBL] [Abstract][Full Text] [Related]
26. Sulfide oxidation, nitrate respiration, carbon acquisition, and electron transport pathways suggested by the draft genome of a single orange Guaymas Basin Beggiatoa (Cand. Maribeggiatoa) sp. filament. MacGregor BJ; Biddle JF; Harbort C; Matthysse AG; Teske A Mar Genomics; 2013 Sep; 11():53-65. PubMed ID: 24012537 [TBL] [Abstract][Full Text] [Related]
27. A simple method to release polyphosphate from activated sludge for phosphorus reuse and recycling. Kuroda A; Takiguchi N; Gotanda T; Nomura K; Kato J; Ikeda T; Ohtake H Biotechnol Bioeng; 2002 May; 78(3):333-8. PubMed ID: 11920449 [TBL] [Abstract][Full Text] [Related]
28. Effect of organic forms of phosphorus and variable concentrations of sulfide on the metabolic generation of soluble-reactive phosphate by sulfur chemolithoautotrophs: a laboratory study. Guhathakurta H; Biswas R; Dey P; Mahapatra PG; Mondal B ISME J; 2007 Oct; 1(6):545-50. PubMed ID: 18043655 [TBL] [Abstract][Full Text] [Related]
29. Phosphate release from waste stabilisation pond sludge: significance and fate of polyphosphate. Powell N; Shilton A; Pratt S; Chisti Y Water Sci Technol; 2011; 63(8):1689-94. PubMed ID: 21866769 [TBL] [Abstract][Full Text] [Related]
31. High rates of denitrification and nitrate removal in cold seep sediments. Bowles M; Joye S ISME J; 2011 Mar; 5(3):565-7. PubMed ID: 20944683 [TBL] [Abstract][Full Text] [Related]
32. Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Renninger N; Knopp R; Nitsche H; Clark DS; Keasling JD Appl Environ Microbiol; 2004 Dec; 70(12):7404-12. PubMed ID: 15574942 [TBL] [Abstract][Full Text] [Related]
33. Sulfur organic compounds in bottom sediments of the eastern Gulf of Finland. Khoroshko LO; Petrova VN; Takhistov VV; Viktorovskii IV; Lahtiperä M; Paasivirta J Environ Sci Pollut Res Int; 2007 Sep; 14(6):366-76. PubMed ID: 17993219 [TBL] [Abstract][Full Text] [Related]
34. Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea. Schulz-Vogt HN; Pollehne F; Jürgens K; Arz HW; Beier S; Bahlo R; Dellwig O; Henkel JV; Herlemann DPR; Krüger S; Leipe T; Schott T ISME J; 2019 May; 13(5):1198-1208. PubMed ID: 30643197 [TBL] [Abstract][Full Text] [Related]
35. Close association of active nitrifiers with Beggiatoa mats covering deep-sea hydrothermal sediments. Winkel M; de Beer D; Lavik G; Peplies J; Mußmann M Environ Microbiol; 2014 Jun; 16(6):1612-26. PubMed ID: 24286252 [TBL] [Abstract][Full Text] [Related]
36. Sulfur cycling in freshwater sediments: A cryptic driving force of iron deposition and phosphorus mobilization. Wu S; Zhao Y; Chen Y; Dong X; Wang M; Wang G Sci Total Environ; 2019 Mar; 657():1294-1303. PubMed ID: 30677896 [TBL] [Abstract][Full Text] [Related]
37. A novel, mat-forming Thiomargarita population associated with a sulfidic fluid flow from a deep-sea mud volcano. Girnth AC; Grünke S; Lichtschlag A; Felden J; Knittel K; Wenzhöfer F; de Beer D; Boetius A Environ Microbiol; 2011 Feb; 13(2):495-505. PubMed ID: 20946529 [TBL] [Abstract][Full Text] [Related]
38. Pilot-scale evaluation of the application of low pH-inducible polyphosphate accumulation to the biological removal of phosphate from wastewaters. Mullan A; McGrath JW; Adamson T; Irwin S; Quinn JP Environ Sci Technol; 2006 Jan; 40(1):296-301. PubMed ID: 16433364 [TBL] [Abstract][Full Text] [Related]
39. Imaging of Cellular Oxidoreductase Activity Suggests Mixotrophic Metabolisms in Bailey JV; Flood BE; Ricci E; Delherbe N mBio; 2017 Nov; 8(6):. PubMed ID: 29114021 [TBL] [Abstract][Full Text] [Related]
40. The role of microbes in the formation of modern and ancient phosphatic mineral deposits. Crosby CH; Bailey JV Front Microbiol; 2012; 3():241. PubMed ID: 22783245 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]