These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 20827494)

  • 41. How to Cope with the Challenges of Environmental Stresses in the Era of Global Climate Change: An Update on ROS Stave off in Plants.
    Singh A; Mehta S; Yadav S; Nagar G; Ghosh R; Roy A; Chakraborty A; Singh IK
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216108
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MAPK Cascades and Transcriptional Factors: Regulation of Heavy Metal Tolerance in Plants.
    Li S; Han X; Lu Z; Qiu W; Yu M; Li H; He Z; Zhuo R
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457281
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nitric oxide mediated alleviation of abiotic challenges in plants.
    Praveen A
    Nitric Oxide; 2022 Nov; 128():37-49. PubMed ID: 35981689
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent progress in the knowledge on the alleviating effect of nitric oxide on heavy metal stress in plants.
    Wei L; Zhang J; Wang C; Liao W
    Plant Physiol Biochem; 2020 Feb; 147():161-171. PubMed ID: 31865162
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving oxidative stress resilience in plants.
    Kerchev PI; Van Breusegem F
    Plant J; 2022 Jan; 109(2):359-372. PubMed ID: 34519111
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production.
    Yan H; Jia H; Chen X; Hao L; An H; Guo X
    Plant Cell Physiol; 2014 Dec; 55(12):2060-76. PubMed ID: 25261532
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress.
    Corpas FJ; Leterrier M; Valderrama R; Airaki M; Chaki M; Palma JM; Barroso JB
    Plant Sci; 2011 Nov; 181(5):604-11. PubMed ID: 21893257
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unravelling chemical priming machinery in plants: the role of reactive oxygen-nitrogen-sulfur species in abiotic stress tolerance enhancement.
    Antoniou C; Savvides A; Christou A; Fotopoulos V
    Curr Opin Plant Biol; 2016 Oct; 33():101-107. PubMed ID: 27419886
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses.
    Naing AH; Kim CK
    Physiol Plant; 2021 Jul; 172(3):1711-1723. PubMed ID: 33605458
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nitric Oxide Acts as a Key Signaling Molecule in Plant Development under Stressful Conditions.
    Khan M; Ali S; Al Azzawi TNI; Yun BW
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902213
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nitrate-Nitrite-Nitric Oxide Pathway: A Mechanism of Hypoxia and Anoxia Tolerance in Plants.
    Timilsina A; Dong W; Hasanuzzaman M; Liu B; Hu C
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232819
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Crosstalk between reactive oxygen species and nitric oxide in plants: Key role of S-nitrosoglutathione reductase.
    Lindermayr C
    Free Radic Biol Med; 2018 Jul; 122():110-115. PubMed ID: 29203326
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitric oxide function in plant abiotic stress.
    Fancy NN; Bahlmann AK; Loake GJ
    Plant Cell Environ; 2017 Apr; 40(4):462-472. PubMed ID: 26754426
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glycinebetaine and abiotic stress tolerance in plants.
    Giri J
    Plant Signal Behav; 2011 Nov; 6(11):1746-51. PubMed ID: 22057338
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protein S-nitrosylation under abiotic stress: Role and mechanism.
    Wang T; Hou X; Wei L; Deng Y; Zhao Z; Liang C; Liao W
    Plant Physiol Biochem; 2024 Feb; 207():108329. PubMed ID: 38184883
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress.
    Ahmad P; Jaleel CA; Salem MA; Nabi G; Sharma S
    Crit Rev Biotechnol; 2010 Sep; 30(3):161-75. PubMed ID: 20214435
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Expression of the tetrahydrofolate-dependent nitric oxide synthase from the green alga Ostreococcus tauri increases tolerance to abiotic stresses and influences stomatal development in Arabidopsis.
    Foresi N; Mayta ML; Lodeyro AF; Scuffi D; Correa-Aragunde N; García-Mata C; Casalongué C; Carrillo N; Lamattina L
    Plant J; 2015 Jun; 82(5):806-21. PubMed ID: 25880454
    [TBL] [Abstract][Full Text] [Related]  

  • 58. ROS and RNS in plant physiology: an overview.
    Del Río LA
    J Exp Bot; 2015 May; 66(10):2827-37. PubMed ID: 25873662
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nitric oxide in plants: an insight on redox activity and responses toward abiotic stress signaling.
    Khator K; Parihar S; Jasik J; Shekhawat GS
    Plant Signal Behav; 2024 Dec; 19(1):2298053. PubMed ID: 38190763
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kresoxim-methyl primes Medicago truncatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment.
    Filippou P; Antoniou C; Obata T; Van Der Kelen K; Harokopos V; Kanetis L; Aidinis V; Van Breusegem F; Fernie AR; Fotopoulos V
    J Exp Bot; 2016 Mar; 67(5):1259-74. PubMed ID: 26712823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.