These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 20828123)

  • 1. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes.
    Wang Z; Li H; Liu Z; Shi Z; Lu J; Suenaga K; Joung SK; Okazaki T; Gu Z; Zhou J; Gao Z; Li G; Sanvito S; Wang E; Iijima S
    J Am Chem Soc; 2010 Oct; 132(39):13840-7. PubMed ID: 20828123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-dependent structure of MoS2 nanocrystals.
    Lauritsen JV; Kibsgaard J; Helveg S; Topsøe H; Clausen BS; Laegsgaard E; Besenbacher F
    Nat Nanotechnol; 2007 Jan; 2(1):53-8. PubMed ID: 18654208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.
    Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A
    Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple L-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries.
    Park SK; Yu SH; Woo S; Quan B; Lee DC; Kim MK; Sung YE; Piao Y
    Dalton Trans; 2013 Feb; 42(7):2399-405. PubMed ID: 23208383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction.
    Yan Y; Ge X; Liu Z; Wang JY; Lee JM; Wang X
    Nanoscale; 2013 Sep; 5(17):7768-71. PubMed ID: 23884193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiwalled carbon nanotubes with molybdenum dioxide nanoplugs--new chemical nanoarchitectures by electrochemical modification.
    Jurkschat K; Wilkins SJ; Salter CJ; Leventis HC; Wildgoose GG; Jiang L; Jones TG; Crossley A; Compton RG
    Small; 2006 Jan; 2(1):95-8. PubMed ID: 17193562
    [No Abstract]   [Full Text] [Related]  

  • 9. The synthesis of high coercivity cobalt-in-carbon nanotube hybrid structures and their optical limiting properties.
    Narayanan TN; Suchand Sandeep CS; Shaijumon MM; Ajayan PM; Philip R; Anantharaman MR
    Nanotechnology; 2009 Jul; 20(28):285702. PubMed ID: 19550014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interacting quasi-two-dimensional sheets of interlinked carbon nanotubes: a high-pressure phase of carbon.
    Saxena S; Tyson TA
    ACS Nano; 2010 Jun; 4(6):3515-21. PubMed ID: 20446666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric field effects on armchair MoS2 nanoribbons.
    Dolui K; Pemmaraju CD; Sanvito S
    ACS Nano; 2012 Jun; 6(6):4823-34. PubMed ID: 22546015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis.
    Li Q; Walter EC; van der Veer WE; Murray BJ; Newberg JT; Bohannan EW; Switzer JA; Hemminger JC; Penner RM
    J Phys Chem B; 2005 Mar; 109(8):3169-82. PubMed ID: 16851337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and stability of molybdenum sulfide fullerenes.
    Bar-Sadan M; Enyashin AN; Gemming S; Popovitz-Biro R; Hong SY; Prior Y; Tenne R; Seifert G
    J Phys Chem B; 2006 Dec; 110(50):25399-410. PubMed ID: 17165987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled chiral nanofibers from ultrathin low-dimensional nanomaterials.
    Tan C; Qi X; Liu Z; Zhao F; Li H; Huang X; Shi L; Zheng B; Zhang X; Xie L; Tang Z; Huang W; Zhang H
    J Am Chem Soc; 2015 Feb; 137(4):1565-71. PubMed ID: 25581019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakdown of high-performance monolayer MoS2 transistors.
    Lembke D; Kis A
    ACS Nano; 2012 Nov; 6(11):10070-5. PubMed ID: 23039374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundamental insights into the electronic structure of zigzag MoS2 nanoribbons.
    Yu S; Zheng W
    Phys Chem Chem Phys; 2016 Feb; 18(6):4675-83. PubMed ID: 26799649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Easy incorporation of single-walled carbon nanotubes into two-dimensional MoS₂ for high-performance hydrogen evolution.
    Cai Y; Yang X; Liang T; Dai L; Ma L; Huang G; Chen W; Chen H; Su H; Xu M
    Nanotechnology; 2014 Nov; 25(46):465401. PubMed ID: 25360803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zigzag graphene nanoribbons with saturated edges.
    Kudin KN
    ACS Nano; 2008 Mar; 2(3):516-22. PubMed ID: 19206578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons.
    Blankenburg S; Cai J; Ruffieux P; Jaafar R; Passerone D; Feng X; Müllen K; Fasel R; Pignedoli CA
    ACS Nano; 2012 Mar; 6(3):2020-5. PubMed ID: 22324827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.