These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 20828435)
1. The unique molecular behavior of water at the chloroform-water interface. McFearin CL; Richmond GL Appl Spectrosc; 2010 Sep; 64(9):986-94. PubMed ID: 20828435 [TBL] [Abstract][Full Text] [Related]
2. Depth profiling of water molecules at the liquid-liquid interface using a combined surface vibrational spectroscopy and molecular dynamics approach. Walker DS; Richmond GL J Am Chem Soc; 2007 Aug; 129(30):9446-51. PubMed ID: 17616192 [TBL] [Abstract][Full Text] [Related]
3. Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces. Jubb AM; Hua W; Allen HC Acc Chem Res; 2012 Jan; 45(1):110-9. PubMed ID: 22066822 [TBL] [Abstract][Full Text] [Related]
4. Integration or segregation: how do molecules behave at oil/water interfaces? Moore FG; Richmond GL Acc Chem Res; 2008 Jun; 41(6):739-48. PubMed ID: 18507401 [TBL] [Abstract][Full Text] [Related]
5. Spectroscopic studies of solvated hydrogen and hydroxide ions at aqueous surfaces. Tarbuck TL; Ota ST; Richmond GL J Am Chem Soc; 2006 Nov; 128(45):14519-27. PubMed ID: 17090035 [TBL] [Abstract][Full Text] [Related]
6. Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface. Gan W; Wu D; Zhang Z; Feng RR; Wang HF J Chem Phys; 2006 Mar; 124(11):114705. PubMed ID: 16555908 [TBL] [Abstract][Full Text] [Related]
7. Understanding the population, coordination, and orientation of water species contributing to the nonlinear optical spectroscopy of the vapor-water interface through molecular dynamics simulations. Walker DS; Hore DK; Richmond GL J Phys Chem B; 2006 Oct; 110(41):20451-9. PubMed ID: 17034230 [TBL] [Abstract][Full Text] [Related]
8. Molecular level properties of the free water surface and different organic liquid/water interfaces, as seen from ITIM analysis of computer simulation results. Hantal G; Darvas M; Pártay LB; Horvai G; Jedlovszky P J Phys Condens Matter; 2010 Jul; 22(28):284112. PubMed ID: 21399284 [TBL] [Abstract][Full Text] [Related]
9. Surfactant adsorption at the salt/water interface: comparing the conformation and interfacial water structure for selected surfactants. Becraft KA; Richmond GL J Phys Chem B; 2005 Mar; 109(11):5108-17. PubMed ID: 16863173 [TBL] [Abstract][Full Text] [Related]
10. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase. Elsaesser T Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543 [TBL] [Abstract][Full Text] [Related]
11. On the structure of water at the aqueous/air interface. Fan Y; Chen X; Yang L; Cremer PS; Gao YQ J Phys Chem B; 2009 Aug; 113(34):11672-9. PubMed ID: 19653670 [TBL] [Abstract][Full Text] [Related]
12. Structure, dynamics, and the free energy of solute adsorption at liquid-vapor interfaces of simple dipolar systems: molecular dynamics results for pure and mixed Stockmayer fluids. Paul S; Chandra A J Phys Chem B; 2007 Nov; 111(43):12500-7. PubMed ID: 17927243 [TBL] [Abstract][Full Text] [Related]
13. Orientational motions of vibrational chromophores in molecules at the air/water interface with time-resolved sum frequency generation. Rao Y; Song D; Turro NJ; Eisenthal KB J Phys Chem B; 2008 Oct; 112(43):13572-6. PubMed ID: 18783198 [TBL] [Abstract][Full Text] [Related]
14. Surface residence and uptake of methyl chloride and methyl alcohol at the air/water interface studied by vibrational sum frequency spectroscopy and molecular dynamics. Harper K; Minofar B; Sierra-Hernandez MR; Casillas-Ituarte NN; Roeselova M; Allen HC J Phys Chem A; 2009 Mar; 113(10):2015-24. PubMed ID: 19195991 [TBL] [Abstract][Full Text] [Related]
15. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Scatena LF; Brown MG; Richmond GL Science; 2001 May; 292(5518):908-12. PubMed ID: 11340199 [TBL] [Abstract][Full Text] [Related]
16. Adsorption of organosulfur species at aqueous surfaces: molecular bonding and orientation. Tarbuck TL; Richmond GL J Phys Chem B; 2005 Nov; 109(44):20868-77. PubMed ID: 16853706 [TBL] [Abstract][Full Text] [Related]
17. Structural characterization of interfacial n-octanol and 3-octanol using molecular dynamic simulations. Napoleon RL; Moore PB J Phys Chem B; 2006 Mar; 110(8):3666-73. PubMed ID: 16494422 [TBL] [Abstract][Full Text] [Related]
18. Interfacial behavior of N-nitrosodiethylamine/bovine serum albumin complexes at the air-water and the chloroform-water interfaces by axisymmetric drop tensiometry. Juárez J; Galaz JG; Machi L; Burboa M; Gutiérrez-Millán LE; Goycoolea FM; Valdez MA J Phys Chem B; 2007 Mar; 111(10):2727-35. PubMed ID: 17315914 [TBL] [Abstract][Full Text] [Related]
19. Air-liquid interfaces of aqueous solutions containing ammonium and sulfate: spectroscopic and molecular dynamics studies. Gopalakrishnan S; Jungwirth P; Tobias DJ; Allen HC J Phys Chem B; 2005 May; 109(18):8861-72. PubMed ID: 16852054 [TBL] [Abstract][Full Text] [Related]
20. Adsorption and reaction of CO2 and SO2 at a water surface. Tarbuck TL; Richmond GL J Am Chem Soc; 2006 Mar; 128(10):3256-67. PubMed ID: 16522107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]