BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20828604)

  • 21. Evaluation of Interindividual Human Variation in Bioactivation and DNA Adduct Formation of Estragole in Liver Predicted by Physiologically Based Kinetic/Dynamic and Monte Carlo Modeling.
    Punt A; Paini A; Spenkelink A; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM
    Chem Res Toxicol; 2016 Apr; 29(4):659-68. PubMed ID: 26952143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A physiologically based biodynamic (PBBD) model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA adduct formation in primary hepatocytes.
    Paini A; Punt A; Viton F; Scholz G; Delatour T; Marin-Kuan M; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2010 May; 245(1):57-66. PubMed ID: 20144636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of nevadensin as an important herb-based constituent inhibiting estragole bioactivation and physiology-based biokinetic modeling of its possible in vivo effect.
    Alhusainy W; Paini A; Punt A; Louisse J; Spenkelink A; Vervoort J; Delatour T; Scholz G; Schilter B; Adams T; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2010 Jun; 245(2):179-90. PubMed ID: 20226806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytotoxicity and genotoxicity of methyleugenol and related congeners-- a mechanism of activation for methyleugenol.
    Burkey JL; Sauer JM; McQueen CA; Sipes IG
    Mutat Res; 2000 Sep; 453(1):25-33. PubMed ID: 11006409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo doses of butadiene epoxides as estimated from in vitro enzyme kinetics by using cob(I)alamin and measured hemoglobin adducts: an inter-species extrapolation approach.
    Motwani HV; Törnqvist M
    Toxicol Appl Pharmacol; 2014 Dec; 281(3):276-84. PubMed ID: 25448046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-activity studies of the carcinogenicities in the mouse and rat of some naturally occurring and synthetic alkenylbenzene derivatives related to safrole and estragole.
    Miller EC; Swanson AB; Phillips DH; Fletcher TL; Liem A; Miller JA
    Cancer Res; 1983 Mar; 43(3):1124-34. PubMed ID: 6825084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human cytochrome p450 enzyme specificity for the bioactivation of estragole and related alkenylbenzenes.
    Jeurissen SM; Punt A; Boersma MG; Bogaards JJ; Fiamegos YC; Schilter B; van Bladeren PJ; Cnubben NH; Rietjens IM
    Chem Res Toxicol; 2007 May; 20(5):798-806. PubMed ID: 17407329
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of human interindividual variation in bioactivation of estragole using physiologically based biokinetic modeling.
    Punt A; Jeurissen SM; Boersma MG; Delatour T; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Sci; 2010 Feb; 113(2):337-48. PubMed ID: 19920071
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methyleugenol and oxidative metabolites induce DNA damage and interact with human topoisomerases.
    Groh IA; Rudakovski O; Gründken M; Schroeter A; Marko D; Esselen M
    Arch Toxicol; 2016 Nov; 90(11):2809-2823. PubMed ID: 26542539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative induction of unscheduled DNA synthesis in cultured rat hepatocytes by allylbenzenes and their 1'-hydroxy metabolites.
    Chan VS; Caldwell J
    Food Chem Toxicol; 1992 Oct; 30(10):831-6. PubMed ID: 1427504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NTP technical report on the toxicity and metabolism studies of chloral hydrate (CAS No. 302-17-0). Administered by gavage to F344/N rats and B6C3F1 mice.
    Beland FA
    Toxic Rep Ser; 1999 Aug; (59):1-66, A1-E7. PubMed ID: 11803702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Species and strain differences in the hepatic cytochrome P450-mediated biotransformation of 1,4-dichlorobenzene.
    Hissink AM; Oudshoorn MJ; Van Ommen B; Van Bladeren PJ
    Toxicol Appl Pharmacol; 1997 Jul; 145(1):1-9. PubMed ID: 9221818
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human consumption of methyleugenol and its elimination from serum.
    Schecter A; Lucier GW; Cunningham ML; Abdo KM; Blumenthal G; Silver AG; Melnick R; Portier C; Barr DB; Barr JR; Stanfill SB; Patterson DG; Needham LL; Stopford W; Masten S; Mignogna J; Tung KC
    Environ Health Perspect; 2004 May; 112(6):678-80. PubMed ID: 15121510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting the hepatocarcinogenic potential of alkenylbenzene flavoring agents using toxicogenomics and machine learning.
    Auerbach SS; Shah RR; Mav D; Smith CS; Walker NJ; Vallant MK; Boorman GA; Irwin RD
    Toxicol Appl Pharmacol; 2010 Mar; 243(3):300-14. PubMed ID: 20004213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of hepatic DNA adducts by methyleugenol in mouse models: drastic decrease by Sult1a1 knockout and strong increase by transgenic human SULT1A1/2.
    Herrmann K; Engst W; Meinl W; Florian S; Cartus AT; Schrenk D; Appel KE; Nolden T; Himmelbauer H; Glatt H
    Carcinogenesis; 2014 Apr; 35(4):935-41. PubMed ID: 24318996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolism of alkenebenzene derivatives in the rat. II. Eugenol and isoeugenol methyl ethers.
    Solheim E; Scheline RR
    Xenobiotica; 1976 Mar; 6(3):137-50. PubMed ID: 1274378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toxicology and carcinogenesis studies of isoeugenol (CAS No. 97-54-1) in F344/N rats and B6C3F1 mice (gavage studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 2010 Sep; (551):1-178. PubMed ID: 21372857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of the margin of exposure (MoE) approach to substances in food that are genotoxic and carcinogenic: example: methyleugenol, CASRN: 93-15-2.
    Smith B; Cadby P; Leblanc JC; Setzer RW
    Food Chem Toxicol; 2010 Jan; 48 Suppl 1():S89-97. PubMed ID: 20113858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiologically based kinetic modeling of the bioactivation of myristicin.
    Al-Malahmeh AJ; Al-Ajlouni A; Wesseling S; Soffers AE; Al-Subeihi A; Kiwamoto R; Vervoort J; Rietjens IM
    Arch Toxicol; 2017 Feb; 91(2):713-734. PubMed ID: 27334372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of glutathione and related cysteine conjugates derived from reactive metabolites of methyleugenol in rats.
    Yao H; Peng Y; Zheng J
    Chem Biol Interact; 2016 Jun; 253():143-52. PubMed ID: 27154494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.