These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 20828781)

  • 1. Long term laboratory column experiments to simulate bank filtration: factors controlling removal of sulfamethoxazole.
    Baumgarten B; Jährig J; Reemtsma T; Jekel M
    Water Res; 2011 Jan; 45(1):211-20. PubMed ID: 20828781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge.
    Grünheid S; Amy G; Jekel M
    Water Res; 2005 Sep; 39(14):3219-28. PubMed ID: 16024062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behaviour and redox sensitivity of antimicrobial residues during bank filtration.
    Heberer T; Massmann G; Fanck B; Taute T; Dünnbier U
    Chemosphere; 2008 Sep; 73(4):451-60. PubMed ID: 18752833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions.
    Suarez S; Lema JM; Omil F
    Water Res; 2010 May; 44(10):3214-24. PubMed ID: 20338614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for the microbially mediated abiotic formation of reversible and non-reversible sulfamethoxazole transformation products during denitrification.
    Nödler K; Licha T; Barbieri M; Pérez S
    Water Res; 2012 May; 46(7):2131-9. PubMed ID: 22326197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fates of selected pharmaceuticals in a large recirculated mesocosm with a pond and bank filtration.
    Zeeshan M; Pabst S; Sandyk E; Ruhl AS
    Sci Total Environ; 2023 Sep; 892():164575. PubMed ID: 37270001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of carbamazepine and sulfamethoxazole by MBR under anoxic and aerobic conditions.
    Hai FI; Li X; Price WE; Nghiem LD
    Bioresour Technol; 2011 Nov; 102(22):10386-90. PubMed ID: 21963248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic micropollutant removal from wastewater effluent-impacted drinking water sources during bank filtration and artificial recharge.
    Maeng SK; Ameda E; Sharma SK; Grützmacher G; Amy GL
    Water Res; 2010 Jul; 44(14):4003-14. PubMed ID: 20542313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photo-removal of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV-C radiation (λmax=254 nm).
    Nasuhoglu D; Yargeau V; Berk D
    J Hazard Mater; 2011 Feb; 186(1):67-75. PubMed ID: 21167641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfamethoxazole biodegradation and biotransformation in the water-sediment system of a natural river.
    Xu B; Mao D; Luo Y; Xu L
    Bioresour Technol; 2011 Jul; 102(14):7069-76. PubMed ID: 21596556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of antibiotic sulfamethoxazole by zero-valent iron under oxic and anoxic conditions: Removal mechanisms in acidic, neutral and alkaline solutions.
    Kobayashi M; Kurosu S; Yamaguchi R; Kawase Y
    J Environ Manage; 2017 Sep; 200():88-96. PubMed ID: 28570939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of photo-Fenton and biological SBBR processes for sulfamethoxazole remediation.
    González O; Esplugas M; Sans C; Esplugas S
    Water Sci Technol; 2008; 58(9):1707-13. PubMed ID: 19029709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of redox conditions and adaptation time on organic micropollutant removal during river bank filtration: A laboratory-scale column study.
    Bertelkamp C; Verliefde AR; Schoutteten K; Vanhaecke L; Vanden Bussche J; Singhal N; van der Hoek JP
    Sci Total Environ; 2016 Feb; 544():309-18. PubMed ID: 26657377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH induced polychromatic UV treatment for the removal of a mixture of SMX, OTC and CIP from water.
    Avisar D; Lester Y; Mamane H
    J Hazard Mater; 2010 Mar; 175(1-3):1068-74. PubMed ID: 19944527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence and fate of bulk organic matter and pharmaceutically active compounds in managed aquifer recharge: a review.
    Maeng SK; Sharma SK; Lekkerkerker-Teunissen K; Amy GL
    Water Res; 2011 May; 45(10):3015-33. PubMed ID: 21489592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater.
    Lei CN; Whang LM; Lin HL
    Water Sci Technol; 2008; 58(5):1001-6. PubMed ID: 18824797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vulnerability of bank filtration systems to climate change.
    Sprenger C; Lorenzen G; Hülshoff I; Grützmacher G; Ronghang M; Pekdeger A
    Sci Total Environ; 2011 Jan; 409(4):655-63. PubMed ID: 21112614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behaviour and redox sensitivity of pharmaceutical residues during bank filtration - Investigation of residues of phenazone-type analgesics.
    Massmann G; Dünnbier U; Heberer T; Taute T
    Chemosphere; 2008 Apr; 71(8):1476-85. PubMed ID: 18279912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of conventional multi-barrier drinking water treatment plants for the removal of four artificial sweeteners.
    Scheurer M; Storck FR; Brauch HJ; Lange FT
    Water Res; 2010 Jun; 44(12):3573-84. PubMed ID: 20462625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.