These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20829064)

  • 1. Site-directed mutagenesis combined with oxidative methionine labeling for probing structural transitions of a membrane protein by mass spectrometry.
    Pan Y; Brown L; Konermann L
    J Am Soc Mass Spectrom; 2010 Nov; 21(11):1947-56. PubMed ID: 20829064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the structure of an integral membrane protein under semi-denaturing conditions by laser-induced oxidative labeling and mass spectrometry.
    Pan Y; Brown L; Konermann L
    J Mol Biol; 2009 Dec; 394(5):968-81. PubMed ID: 19804782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterization of an integral membrane protein in its natural lipid environment by oxidative methionine labeling and mass spectrometry.
    Pan Y; Stocks BB; Brown L; Konermann L
    Anal Chem; 2009 Jan; 81(1):28-35. PubMed ID: 19055344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic folding mechanism of an integral membrane protein examined by pulsed oxidative labeling and mass spectrometry.
    Pan Y; Brown L; Konermann L
    J Mol Biol; 2011 Jul; 410(1):146-58. PubMed ID: 21570983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsed hydrogen/deuterium exchange mass spectrometry for time-resolved membrane protein folding studies.
    Khanal A; Pan Y; Brown LS; Konermann L
    J Mass Spectrom; 2012 Dec; 47(12):1620-6. PubMed ID: 23280751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of the unfolding of individual bacteriorhodopsin helices in sodium dodecyl sulfate micelles.
    Krishnamani V; Lanyi JK
    Biochemistry; 2012 Feb; 51(6):1061-9. PubMed ID: 22304411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of membrane protein topology models by oxidative labeling and mass spectrometry.
    Pan Y; Ruan X; Valvano MA; Konermann L
    J Am Soc Mass Spectrom; 2012 May; 23(5):889-98. PubMed ID: 22410873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localisation of methionine residues in bacteriorhodopsin by carbonyl 13C-NMR with sequence-specific assignments.
    Seigneuret M; Kainosho M
    FEBS Lett; 1993 Jul; 327(1):7-12. PubMed ID: 8335098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring membrane protein structural features by oxidative labeling and mass spectrometry.
    Konermann L; Pan Y
    Expert Rev Proteomics; 2012 Oct; 9(5):497-504. PubMed ID: 23194267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of bacteriorhodopsin derivatives constructed by insertion of an exogenous epitope into extra-membrane loops.
    Teufel M; Pompejus M; Humbel B; Friedrich K; Fritz HJ
    EMBO J; 1993 Sep; 12(9):3399-408. PubMed ID: 7504623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass spectrometry combined with oxidative labeling for exploring protein structure and folding.
    Konermann L; Stocks BB; Pan Y; Tong X
    Mass Spectrom Rev; 2010; 29(4):651-67. PubMed ID: 19672951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray diffraction of a cysteine-containing bacteriorhodopsin mutant and its mercury derivative. Localization of an amino acid residue in the loop of an integral membrane protein.
    Krebs MP; Behrens W; Mollaaghababa R; Khorana HG; Heyn MP
    Biochemistry; 1993 Nov; 32(47):12830-4. PubMed ID: 8251504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent changes in side-chain solvent accessibility during cytochrome c folding probed by pulsed oxidative labeling and mass spectrometry.
    Stocks BB; Konermann L
    J Mol Biol; 2010 Apr; 398(2):362-73. PubMed ID: 20230834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable folding core in the folding transition state of an alpha-helical integral membrane protein.
    Curnow P; Di Bartolo ND; Moreton KM; Ajoje OO; Saggese NP; Booth PJ
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14133-8. PubMed ID: 21831834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refolding of bacteriorhodopsin from expressed polypeptide fragments.
    Marti T
    J Biol Chem; 1998 Apr; 273(15):9312-22. PubMed ID: 9535926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration of conformation and dynamics of bacteriorhodopsin induced by protonation of Asp 85 and deprotonation of Schiff base as studied by 13C NMR.
    Kawase Y; Tanio M; Kira A; Yamaguchi S; Tuzi S; Naito A; Kataoka M; Lanyi JK; Needleman R; Saitô H
    Biochemistry; 2000 Nov; 39(47):14472-80. PubMed ID: 11087400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unfolding pathways of individual bacteriorhodopsins.
    Oesterhelt F; Oesterhelt D; Pfeiffer M; Engel A; Gaub HE; Müller DJ
    Science; 2000 Apr; 288(5463):143-6. PubMed ID: 10753119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methionine changes in bacteriorhodopsin detected by FTIR and cell-free selenomethionine substitution.
    Bergo V; Mamaev S; Olejnik J; Rothschild KJ
    Biophys J; 2003 Feb; 84(2 Pt 1):960-6. PubMed ID: 12547777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoplasmic surface structures of bacteriorhodopsin modified by site-directed mutations and cation binding as revealed by 13C NMR.
    Yonebayashi K; Yamaguchi S; Tuzi S; Saitô H
    Eur Biophys J; 2003 Mar; 32(1):1-11. PubMed ID: 12632201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.