BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20829217)

  • 1. GABAergic mechanism in the rostral ventrolateral medulla contributes to the hypotension of moxonidine.
    Peng JF; Wu ZT; Wang YK; Yuan WJ; Sun T; Ni X; Su DF; Wang W; Xu MJ; Wang WZ
    Cardiovasc Res; 2011 Feb; 89(2):473-81. PubMed ID: 20829217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sympathoinhibitory mechanism of moxonidine: role of the inducible nitric oxide synthase in the rostral ventrolateral medulla.
    Peng J; Wang YK; Wang LG; Yuan WJ; Su DF; Ni X; Deng XM; Wang WZ
    Cardiovasc Res; 2009 Nov; 84(2):283-91. PubMed ID: 19535378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of NMDA and AMPA/kainate receptors involved in cardiovascular inhibition produced by imidazoline-like drugs in anaesthetized rats.
    Wang LG; Zeng J; Yuan WJ; Su DF; Wang WZ
    Exp Physiol; 2007 Sep; 92(5):849-58. PubMed ID: 17573415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imidazoline receptors associated with noradrenergic terminals in the rostral ventrolateral medulla mediate the hypotensive responses of moxonidine but not clonidine.
    Chan CK; Burke SL; Zhu H; Piletz JE; Head GA
    Neuroscience; 2005; 132(4):991-1007. PubMed ID: 15857704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective antihypertensive action of moxonidine is mediated mainly by I1-imidazoline receptors in the rostral ventrolateral medulla.
    Haxhiu MA; Dreshaj I; Schäfer SG; Ernsberger P
    J Cardiovasc Pharmacol; 1994; 24 Suppl 1():S1-8. PubMed ID: 7533221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacology and clinical use of moxonidine, a new centrally acting sympatholytic antihypertensive agent.
    Prichard BN; Owens CW; Graham BR
    J Hum Hypertens; 1997 Aug; 11 Suppl 1():S29-45. PubMed ID: 9321737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of nitric oxide-mediated γ-amino butyric acid release in rostral ventrolateral medulla is involved in superoxide-induced sympathoexcitation of hypertensive rats.
    Shinohara K; Hirooka Y; Kishi T; Sunagawa K
    Circ J; 2012; 76(12):2814-21. PubMed ID: 22972304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of moxonidine injected into rostral ventrolateral medulla on blood pressure, heart rate, and renal sympathetic nerve activity in rats.
    Xu YF; He RR
    Zhongguo Yao Li Xue Bao; 1997 Sep; 18(5):415-8. PubMed ID: 10322930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiovascular effects produced by activation of GABA receptors in the rostral ventrolateral medulla of conscious rats.
    Menezes RC; Fontes MA
    Neuroscience; 2007 Jan; 144(1):336-43. PubMed ID: 17049168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Commissural nucleus of the solitary tract regulates the antihypertensive effects elicited by moxonidine.
    Totola LT; Alves TB; Takakura AC; Ferreira-Neto HC; Antunes VR; Menani JV; Colombari E; Moreira TS
    Neuroscience; 2013 Oct; 250():80-91. PubMed ID: 23850502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RVLM glycine receptors mediate GABAA and GABAB)independent sympathoinhibition from CVLM in rats.
    Heesch CM; Laiprasert JD; Kvochina L
    Brain Res; 2006 Dec; 1125(1):46-59. PubMed ID: 17112484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of eNOS in the RVLM causes hypotension and bradycardia via GABA release.
    Kishi T; Hirooka Y; Sakai K; Shigematsu H; Shimokawa H; Takeshita A
    Hypertension; 2001 Oct; 38(4):896-901. PubMed ID: 11641305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sympathoexcitation of moxonidine in the caudal ventrolateral medulla is dependent on I1-imidazoline receptors in anesthetized rats.
    Wang LG; Gao L; Wang W; Yuan WJ; Wang WZ
    Neurosci Lett; 2007 Oct; 426(2):91-6. PubMed ID: 17889438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress contributes to renovascular hypertension.
    Oliveira-Sales EB; Dugaich AP; Carillo BA; Abreu NP; Boim MA; Martins PJ; D'Almeida V; Dolnikoff MS; Bergamaschi CT; Campos RR
    Am J Hypertens; 2008 Jan; 21(1):98-104. PubMed ID: 18091751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurochemistry within ventrolateral medulla and cardiovascular effects during static exercise following eNOS antagonism.
    Ishide T; Preuss CV; Maher TJ; Ally A
    Neurosci Res; 2005 May; 52(1):21-30. PubMed ID: 15811549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low dose of moxonidine within the rostral ventrolateral medulla improves the baroreflex sensitivity control of sympathetic activity in hypertensive rat.
    Wang JL; Wang L; Wu ZT; Yuan WJ; Su DF; Ni X; Yan JJ; Wang WZ
    Acta Pharmacol Sin; 2009 Dec; 30(12):1594-600. PubMed ID: 19960005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiovascular responses and neurotransmitter changes during static muscle contraction following blockade of inducible nitric oxide synthase (iNOS) within the ventrolateral medulla.
    Ally A; Phattanarudee S; Kabadi S; Patel M; Maher TJ
    Brain Res; 2006 May; 1090(1):123-33. PubMed ID: 16650388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harmane produces hypotension following microinjection into the RVLM: possible role of I(1)-imidazoline receptors.
    Musgrave IF; Badoer E
    Br J Pharmacol; 2000 Mar; 129(6):1057-9. PubMed ID: 10725251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rostral ventrolateral medulla suppresses reflex bradycardia by the release of gamma-aminobutyric acid in nucleus tractus solitarii of the rat.
    Len WB; Chan JY
    Synapse; 2001 Jan; 39(1):23-31. PubMed ID: 11071706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antihypertensive responses elicited by central moxonidine in rats: possible role of nitric oxide.
    Moreira TS; Takakura AC; Sato MA; Menani JV; Colombari E
    J Cardiovasc Pharmacol; 2006 Jun; 47(6):780-7. PubMed ID: 16810079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.