BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 20829405)

  • 1. Mechanisms of type I and type II pseudohypoaldosteronism.
    Furgeson SB; Linas S
    J Am Soc Nephrol; 2010 Nov; 21(11):1842-5. PubMed ID: 20829405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired degradation of WNK1 and WNK4 kinases causes PHAII in mutant KLHL3 knock-in mice.
    Susa K; Sohara E; Rai T; Zeniya M; Mori Y; Mori T; Chiga M; Nomura N; Nishida H; Takahashi D; Isobe K; Inoue Y; Takeishi K; Takeda N; Sasaki S; Uchida S
    Hum Mol Genet; 2014 Oct; 23(19):5052-60. PubMed ID: 24821705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WNK4 is indispensable for the pathogenesis of pseudohypoaldosteronism type II caused by mutant KLHL3.
    Susa K; Sohara E; Takahashi D; Okado T; Rai T; Uchida S
    Biochem Biophys Res Commun; 2017 Sep; 491(3):727-732. PubMed ID: 28743496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WNK kinases regulate thiazide-sensitive Na-Cl cotransport.
    Yang CL; Angell J; Mitchell R; Ellison DH
    J Clin Invest; 2003 Apr; 111(7):1039-45. PubMed ID: 12671053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis.
    Ring AM; Leng Q; Rinehart J; Wilson FH; Kahle KT; Hebert SC; Lifton RP
    Proc Natl Acad Sci U S A; 2007 Mar; 104(10):4025-9. PubMed ID: 17360471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of WNK kinases in regulating tubular salt and potassium transport and in the development of hypertension.
    Gamba G
    Am J Physiol Renal Physiol; 2005 Feb; 288(2):F245-52. PubMed ID: 15637347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ENaC and ROMK activity are inhibited in the DCT2/CNT of TgWnk4
    Zhang C; Wang L; Su XT; Zhang J; Lin DH; Wang WH
    Am J Physiol Renal Physiol; 2017 Apr; 312(4):F682-F688. PubMed ID: 28365586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4.
    Shibata S; Zhang J; Puthumana J; Stone KL; Lifton RP
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7838-43. PubMed ID: 23576762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A molecular update on pseudohypoaldosteronism type II.
    Pathare G; Hoenderop JG; Bindels RJ; San-Cristobal P
    Am J Physiol Renal Physiol; 2013 Dec; 305(11):F1513-20. PubMed ID: 24107425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4(D561A/+) knockin mouse model.
    Yang SS; Morimoto T; Rai T; Chiga M; Sohara E; Ohno M; Uchida K; Lin SH; Moriguchi T; Shibuya H; Kondo Y; Sasaki S; Uchida S
    Cell Metab; 2007 May; 5(5):331-44. PubMed ID: 17488636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion.
    Kahle KT; Wilson FH; Leng Q; Lalioti MD; O'Connell AD; Dong K; Rapson AK; MacGregor GG; Giebisch G; Hebert SC; Lifton RP
    Nat Genet; 2003 Dec; 35(4):372-6. PubMed ID: 14608358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Renal Electrolyte Transport by WNK and SPAK-OSR1 Kinases.
    Hadchouel J; Ellison DH; Gamba G
    Annu Rev Physiol; 2016; 78():367-89. PubMed ID: 26863326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4.
    Chávez-Canales M; Zhang C; Soukaseum C; Moreno E; Pacheco-Alvarez D; Vidal-Petiot E; Castañeda-Bueno M; Vázquez N; Rojas-Vega L; Meermeier NP; Rogers S; Jeunemaitre X; Yang CL; Ellison DH; Gamba G; Hadchouel J
    Hypertension; 2014 Nov; 64(5):1047-53. PubMed ID: 25113964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WNK4 kinase is a physiological intracellular chloride sensor.
    Chen JC; Lo YF; Lin YW; Lin SH; Huang CL; Cheng CJ
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4502-4507. PubMed ID: 30765526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new kindred with pseudohypoaldosteronism type II and a novel mutation (564D>H) in the acidic motif of the WNK4 gene.
    Golbang AP; Murthy M; Hamad A; Liu CH; Cope G; Van't Hoff W; Cuthbert A; O'Shaughnessy KM
    Hypertension; 2005 Aug; 46(2):295-300. PubMed ID: 15998707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WNK1 affects surface expression of the ROMK potassium channel independent of WNK4.
    Cope G; Murthy M; Golbang AP; Hamad A; Liu CH; Cuthbert AW; O'Shaughnessy KM
    J Am Soc Nephrol; 2006 Jul; 17(7):1867-74. PubMed ID: 16775035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenotypes of pseudohypoaldosteronism type II caused by the WNK4 D561A missense mutation are dependent on the WNK-OSR1/SPAK kinase cascade.
    Chiga M; Rafiqi FH; Alessi DR; Sohara E; Ohta A; Rai T; Sasaki S; Uchida S
    J Cell Sci; 2011 May; 124(Pt 9):1391-5. PubMed ID: 21486947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WNK kinases: molecular regulators of integrated epithelial ion transport.
    Kahle KT; Wilson FH; Lalioti M; Toka H; Qin H; Lifton RP
    Curr Opin Nephrol Hypertens; 2004 Sep; 13(5):557-62. PubMed ID: 15300163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased ENaC expression compensates the increased NCC activity following inactivation of the kidney-specific isoform of WNK1 and prevents hypertension.
    Hadchouel J; Soukaseum C; Büsst C; Zhou XO; Baudrie V; Zürrer T; Cambillau M; Elghozi JL; Lifton RP; Loffing J; Jeunemaitre X
    Proc Natl Acad Sci U S A; 2010 Oct; 107(42):18109-14. PubMed ID: 20921400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WNK kinases and the control of blood pressure.
    Cope G; Golbang A; O'Shaughnessy KM
    Pharmacol Ther; 2005 May; 106(2):221-31. PubMed ID: 15866321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.