BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 20829491)

  • 1. Exploring challenges in rational enzyme design by simulating the catalysis in artificial kemp eliminase.
    Frushicheva MP; Cao J; Chu ZT; Warshel A
    Proc Natl Acad Sci U S A; 2010 Sep; 107(39):16869-74. PubMed ID: 20829491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges and advances in validating enzyme design proposals: the case of kemp eliminase catalysis.
    Frushicheva MP; Cao J; Warshel A
    Biochemistry; 2011 May; 50(18):3849-58. PubMed ID: 21443179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of the in-silico-designed kemp eliminase KE70 by computational design and directed evolution.
    Khersonsky O; Röthlisberger D; Wollacott AM; Murphy P; Dym O; Albeck S; Kiss G; Houk KN; Baker D; Tawfik DS
    J Mol Biol; 2011 Apr; 407(3):391-412. PubMed ID: 21277311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating the catalytic effect of a designed mononuclear zinc metalloenzyme that catalyzes the hydrolysis of phosphate triesters.
    Singh MK; Chu ZT; Warshel A
    J Phys Chem B; 2014 Oct; 118(42):12146-52. PubMed ID: 25233046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ensemble-based enzyme design can recapitulate the effects of laboratory directed evolution in silico.
    Broom A; Rakotoharisoa RV; Thompson MC; Zarifi N; Nguyen E; Mukhametzhanov N; Liu L; Fraser JS; Chica RA
    Nat Commun; 2020 Sep; 11(1):4808. PubMed ID: 32968058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the Development of Ground-State Destabilization and Transition-State Stabilization in Two Directed Evolution Paths of Kemp Eliminases.
    Jindal G; Ramachandran B; Bora RP; Warshel A
    ACS Catal; 2017 May; 7(5):3301-3305. PubMed ID: 29082065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Importance of the Scaffold for de Novo Enzymes: A Case Study with Kemp Eliminase.
    Bhowmick A; Sharma SC; Head-Gordon T
    J Am Chem Soc; 2017 Apr; 139(16):5793-5800. PubMed ID: 28383910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of reorganization energy drives evolution of the designed Kemp eliminase KE07.
    Labas A; Szabo E; Mones L; Fuxreiter M
    Biochim Biophys Acta; 2013 May; 1834(5):908-17. PubMed ID: 23380188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59.
    Khersonsky O; Kiss G; Röthlisberger D; Dym O; Albeck S; Houk KN; Baker D; Tawfik DS
    Proc Natl Acad Sci U S A; 2012 Jun; 109(26):10358-63. PubMed ID: 22685214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolution of multiple active site configurations in a designed enzyme.
    Hong NS; Petrović D; Lee R; Gryn'ova G; Purg M; Saunders J; Bauer P; Carr PD; Lin CY; Mabbitt PD; Zhang W; Altamore T; Easton C; Coote ML; Kamerlin SCL; Jackson CJ
    Nat Commun; 2018 Sep; 9(1):3900. PubMed ID: 30254369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward accurate screening in computer-aided enzyme design.
    Roca M; Vardi-Kilshtain A; Warshel A
    Biochemistry; 2009 Apr; 48(14):3046-56. PubMed ID: 19161327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kemp Eliminase Activity of Ketosteroid Isomerase.
    Lamba V; Sanchez E; Fanning LR; Howe K; Alvarez MA; Herschlag D; Forconi M
    Biochemistry; 2017 Jan; 56(4):582-591. PubMed ID: 28045505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural Evolution Provides Strong Hints about Laboratory Evolution of Designer Enzymes.
    Xie WJ; Warshel A
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2207904119. PubMed ID: 35901204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the challenge of exploring the evolutionary trajectory from phosphotriesterase to arylesterase using computer simulations.
    Bora RP; Mills MJ; Frushicheva MP; Warshel A
    J Phys Chem B; 2015 Feb; 119(8):3434-45. PubMed ID: 25620270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Misunderstanding the preorganization concept can lead to confusions about the origin of enzyme catalysis.
    Jindal G; Warshel A
    Proteins; 2017 Dec; 85(12):2157-2161. PubMed ID: 28905418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series.
    Khersonsky O; Röthlisberger D; Dym O; Albeck S; Jackson CJ; Baker D; Tawfik DS
    J Mol Biol; 2010 Mar; 396(4):1025-42. PubMed ID: 20036254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial Approach for Exploring Conformational Space and Activation Barriers in Computer-Aided Enzyme Design.
    Mondal D; Kolev V; Warshel A
    ACS Catal; 2020 Jun; 10(11):6002-6012. PubMed ID: 34178420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent Entropy Contributions to Catalytic Activity in Designed and Optimized Kemp Eliminases.
    Belsare S; Pattni V; Heyden M; Head-Gordon T
    J Phys Chem B; 2018 May; 122(21):5300-5307. PubMed ID: 28899094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kemp elimination catalysts by computational enzyme design.
    Röthlisberger D; Khersonsky O; Wollacott AM; Jiang L; DeChancie J; Betker J; Gallaher JL; Althoff EA; Zanghellini A; Dym O; Albeck S; Houk KN; Tawfik DS; Baker D
    Nature; 2008 May; 453(7192):190-5. PubMed ID: 18354394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.