These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 20829570)

  • 1. Piezoelectric touch-sensitive flexible hybrid energy harvesting nanoarchitectures.
    Choi D; Lee KY; Lee KH; Kim ES; Kim TS; Lee SY; Kim SW; Choi JY; Kim JM
    Nanotechnology; 2010 Oct; 21(40):405503. PubMed ID: 20829570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies.
    Xu C; Wang X; Wang ZL
    J Am Chem Soc; 2009 Apr; 131(16):5866-72. PubMed ID: 19338339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.
    Yang Y; Zhang H; Zhu G; Lee S; Lin ZH; Wang ZL
    ACS Nano; 2013 Jan; 7(1):785-90. PubMed ID: 23199138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy.
    Hansen BJ; Liu Y; Yang R; Wang ZL
    ACS Nano; 2010 Jul; 4(7):3647-52. PubMed ID: 20507155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester.
    Zhu Y; Zhang Z; Zhang P; Tan Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin.
    Lee S; Youn BD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):629-45. PubMed ID: 21429855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications.
    Hwang GT; Byun M; Jeong CK; Lee KJ
    Adv Healthc Mater; 2015 Apr; 4(5):646-58. PubMed ID: 25476410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(dimethylsiloxane)/ZnO Nanoflakes/Three-Dimensional Graphene Heterostructures for High-Performance Flexible Energy Harvesters with Simultaneous Piezoelectric and Triboelectric Generation.
    Qian Y; Kang DJ
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32281-32288. PubMed ID: 30157630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Structured Flexible Piezoelectric Film Energy Harvesters for Effectively Integrated Performance.
    Han JH; Park KI; Jeong CK
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30909637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible piezoelectric ZnO-paper nanocomposite strain sensor.
    Gullapalli H; Vemuru VS; Kumar A; Botello-Mendez A; Vajtai R; Terrones M; Nagarajaiah S; Ajayan PM
    Small; 2010 Aug; 6(15):1641-6. PubMed ID: 20623526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfibre-nanowire hybrid structure for energy scavenging.
    Qin Y; Wang X; Wang ZL
    Nature; 2008 Feb; 451(7180):809-13. PubMed ID: 18273015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organo-Lead Halide Perovskite Induced Electroactive β-Phase in Porous PVDF Films: An Excellent Material for Photoactive Piezoelectric Energy Harvester and Photodetector.
    Sultana A; Sadhukhan P; Alam MM; Das S; Middya TR; Mandal D
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4121-4130. PubMed ID: 29308647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes.
    Chen PC; Shen G; Shi Y; Chen H; Zhou C
    ACS Nano; 2010 Aug; 4(8):4403-11. PubMed ID: 20731426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and analytical parametric study of single-crystal unimorph beams for vibration energy harvesting.
    Karami MA; Bilgen O; Inman DJ; Friswell MI
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1508-20. PubMed ID: 21768034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates.
    Qiu Y; Zhang H; Hu L; Yang D; Wang L; Wang B; Ji J; Liu G; Liu X; Lin J; Li F; Han S
    Nanoscale; 2012 Oct; 4(20):6568-73. PubMed ID: 22971814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-efficiency piezoelectric micro harvester for collecting low-frequency mechanical energy.
    Li X; Song J; Feng S; Xie X; Li Z; Wang L; Pu Y; Soh AK; Shen J; Lu W; Liu S
    Nanotechnology; 2016 Dec; 27(48):485402. PubMed ID: 27819801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paper-based piezoelectric touch pads with hydrothermally grown zinc oxide nanowires.
    Li X; Wang YH; Zhao C; Liu X
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22004-12. PubMed ID: 25420995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid light-emitting diodes based on flexible sheets of mass-produced ZnO nanowires.
    Liu J; Ahn YH; Park JY; Koh KH; Lee S
    Nanotechnology; 2009 Nov; 20(44):445203. PubMed ID: 19809114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion.
    Khan FU; Izhar
    Rev Sci Instrum; 2016 Feb; 87(2):025003. PubMed ID: 26931884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.