These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 20830079)

  • 1. Comparison of grating designs for the Lyman Far-Ultraviolet Spectroscopic Explorer spectrograph.
    Duban M
    Appl Opt; 1993 Aug; 32(22):4253-64. PubMed ID: 20830079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aberration-corrected aspheric grating designs for the Lyman/Far-Ultraviolet Spectroscopic Explorer high-resolution spectrograph: a comparison.
    Trout C; Content D; Davila P
    Appl Opt; 1992 Mar; 31(7):943-8. PubMed ID: 20720704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Holographic gratings for the Far Ultraviolet Spectroscopic Explorer: development, imaging, and efficiency tests of two prototypes.
    Chambord S; Grange R; Flamand J; Saïsse M; Reynaud JL
    Appl Opt; 1996 Jul; 35(19):3653-61. PubMed ID: 21102761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aberration corrected aspheric gratings for far ultraviolet spectrographs: conventional approach.
    Content D; Trout C; Davila P; Wilson M
    Appl Opt; 1991 Mar; 30(7):801-6. PubMed ID: 20582063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-dispersion spherical holographic gratings in a modified rowland mounting.
    Duban M
    Appl Opt; 2001 Apr; 40(10):1599-608. PubMed ID: 18357153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformed ellipsoidal gratings for far-ultraviolet spectrographs: analytic optimization.
    Content D; Namioka T
    Appl Opt; 1993 Sep; 32(25):4881-9. PubMed ID: 20830163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of mechanically ruled versus holographically varied line-spacing gratings for a soft-x-ray flat-field spectrograph.
    Yamazaki T; Gullikson E; Miyata N; Koike M; Harada Y; Mrowka S; Kleineberg U; Underwood JH; Yanagihara MM; Sano K
    Appl Opt; 1999 Jul; 38(19):4001-3. PubMed ID: 18323875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Holographic diffraction gratings generated by aberrated wave fronts: application to a high-resolution far-ultraviolet spectrograph.
    Grange R; Laget M
    Appl Opt; 1991 Sep; 30(25):3598-603. PubMed ID: 20706431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberration-corrected aspheric gratings for far-ultraviolet spectrographs: holographic approach.
    Davila P; Content D; Trout C
    Appl Opt; 1992 Mar; 31(7):949-54. PubMed ID: 20720705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic comparison between 1200 grooves/mm ruled and holographic gratings of a flat-field spectrometer and its absolute sensitivity calibration using bremsstrahlung continuum.
    Chowdhuri MB; Morita S; Goto M; Nishimura H; Nagai K; Fujioka S
    Rev Sci Instrum; 2007 Feb; 78(2):023501. PubMed ID: 17578107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Eagle-type monochromator mounting with ruled diffraction grating at 45 degrees off-plane.
    Lindblom P; Sandberg B
    Appl Opt; 1980 Jun; 19(12):1941-5. PubMed ID: 20221159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Far-ultraviolet spectrographs: the impact of holographic grating design.
    Cash W
    Appl Opt; 1995 May; 34(13):2241-6. PubMed ID: 21037773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic evaluation of three different gratings used for a flat-field extreme ultraviolet spectrometer to monitor Delta n=1 transitions from medium-Z impurities in 10-30 A.
    Chowdhuri MB; Morita S; Goto M; Sasai H
    Rev Sci Instrum; 2008 Oct; 79(10):10F537. PubMed ID: 19044679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of mechanically ruled concave diffraction gratings by use of an original geometric theory.
    Sokolova E
    Appl Opt; 2004 Jan; 43(1):20-8. PubMed ID: 14714639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High diffraction efficiency varied-line-space concave gratings for the Lyman ultraviolet explorer.
    Ren T; Qiu K; Li A; Huan S; Lou Z; Ji L; Li S; Hong Y
    Appl Opt; 2023 Dec; 62(35):9414-9421. PubMed ID: 38108714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equivalence of focusing conditions for holographic and varied line-space grating systems.
    Palmer C; McKinney WR
    Appl Opt; 1990 Jan; 29(1):47-51. PubMed ID: 20556067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraviolet groove efficiency of a holographic grating: implications for a dual-order spectrograph.
    McCandliss SR; Burgh EB; Feldman PD
    Appl Opt; 2001 Jun; 40(16):2626-31. PubMed ID: 18357277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging extreme ultraviolet spectrometer employing a single toroidal diffraction grating: the initial evaluation.
    Huber MC; Timothy JG; Morgan JS; Lemaitre G; Tondello G; Jannitti E; Scarin P
    Appl Opt; 1988 Aug; 27(16):3503-10. PubMed ID: 20539406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ruling engine using a piezoelectric device for large and high-groove density gratings.
    Kita T; Harada T
    Appl Opt; 1992 Apr; 31(10):1399-406. PubMed ID: 20720770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toroidal grating obtained on an elastic substrate.
    Huber MC; Jannitti E; Lemaître G; Tondello G
    Appl Opt; 1981 Jun; 20(12):2139-42. PubMed ID: 20332899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.