These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 20830674)

  • 1. Modeling of uncertainties in biochemical reactions.
    Mišković L; Hatzimanikatis V
    Biotechnol Bioeng; 2011 Feb; 108(2):413-23. PubMed ID: 20830674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General mathematical formula for near equilibrium relaxation kinetics of basic enzyme reactions and its applications to find conformational selection steps.
    Egawa T; Callender R
    Math Biosci; 2019 Jul; 313():61-70. PubMed ID: 30935841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty reduction in biochemical kinetic models: Enforcing desired model properties.
    Miskovic L; Béal J; Moret M; Hatzimanikatis V
    PLoS Comput Biol; 2019 Aug; 15(8):e1007242. PubMed ID: 31430276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simplified approach to derive Cleland model for enzymatic reactions.
    Saraswathi G; Panda T; Basak T
    Biotechnol Lett; 2013 May; 35(5):785-9. PubMed ID: 23455878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints.
    Liebermeister W; Klipp E
    Theor Biol Med Model; 2006 Dec; 3():41. PubMed ID: 17173669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A probabilistic framework for the exploration of enzymatic capabilities based on feasible kinetics and control analysis.
    Saa PA; Nielsen LK
    Biochim Biophys Acta; 2016 Mar; 1860(3):576-87. PubMed ID: 26721334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of rate law approximations in bottom-up kinetic models of metabolism.
    Du B; Zielinski DC; Kavvas ES; Dräger A; Tan J; Zhang Z; Ruggiero KE; Arzumanyan GA; Palsson BO
    BMC Syst Biol; 2016 Jun; 10(1):40. PubMed ID: 27266508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic constraints for formation of steady states in biochemical networks.
    Liu J
    Biophys J; 2005 May; 88(5):3212-23. PubMed ID: 15731381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of enzymatic depolymerization of guar galactomannan.
    Mahammad S; Prud'homme RK; Roberts GW; Khan SA
    Biomacromolecules; 2006 Sep; 7(9):2583-90. PubMed ID: 16961321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulations of single- and multistep enzyme-catalyzed reaction sequences: effects of diffusion, cell size, enzyme fluctuations, colocalization, and segregation.
    Anderson JB; Anderson LE; Kussmann J
    J Chem Phys; 2010 Jul; 133(3):034104. PubMed ID: 20649305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data.
    Liebermeister W; Klipp E
    Theor Biol Med Model; 2006 Dec; 3():42. PubMed ID: 17173670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic pathway modeling for industrial biotechnology: challenging but worthwhile.
    Wiechert W; Noack S
    Curr Opin Biotechnol; 2011 Oct; 22(5):604-10. PubMed ID: 21353523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling.
    Tummler K; Lubitz T; Schelker M; Klipp E
    FEBS J; 2014 Jan; 281(2):549-71. PubMed ID: 24034816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation.
    Liebermeister W; Uhlendorf J; Klipp E
    Bioinformatics; 2010 Jun; 26(12):1528-34. PubMed ID: 20385728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid simulation and analysis of isotopomer distributions using constraints based on enzyme mechanisms: an example from HT29 cancer cells.
    Selivanov VA; Meshalkina LE; Solovjeva ON; Kuchel PW; Ramos-Montoya A; Kochetov GA; Lee PW; Cascante M
    Bioinformatics; 2005 Sep; 21(17):3558-64. PubMed ID: 16002431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigations of reaction kinetics for immobilized enzymes--identification of parameters in the presence of diffusion limitation.
    Berendsen WR; Lapin A; Reuss M
    Biotechnol Prog; 2006; 22(5):1305-12. PubMed ID: 17022668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systems biology and the origins of life? part II. Are biochemical networks possible ancestors of living systems? networks of catalysed chemical reactions: non-equilibrium, self-organization and evolution.
    Ricard J
    C R Biol; 2010; 333(11-12):769-78. PubMed ID: 21146132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semisupervised Gaussian Process for Automated Enzyme Search.
    Mellor J; Grigoras I; Carbonell P; Faulon JL
    ACS Synth Biol; 2016 Jun; 5(6):518-28. PubMed ID: 27007080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.