BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 20830738)

  • 1. Hip screw migration testing: first results for hip screws and helical blades utilizing a new oscillating test method.
    Born CT; Karich B; Bauer C; von Oldenburg G; Augat P
    J Orthop Res; 2011 May; 29(5):760-6. PubMed ID: 20830738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lag screws for hip fracture fixation: Evaluation of migration resistance under simulated walking.
    Ehmke LW; Fitzpatrick DC; Krieg JC; Madey SM; Bottlang M
    J Orthop Res; 2005 Nov; 23(6):1329-35. PubMed ID: 15994054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does cancellous bone compaction due to insertion of a blade implant influence the cut-out resistance? A biomechanical study.
    Wähnert D; Gudushauri P; Schiuma D; Richards G; Windolf M
    Clin Biomech (Bristol, Avon); 2010 Dec; 25(10):1053-7. PubMed ID: 20800326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is a helical shaped implant a superior alternative to the Dynamic Hip Screw for unstable femoral neck fractures? A biomechanical investigation.
    Windolf M; Braunstein V; Dutoit C; Schwieger K
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):59-64. PubMed ID: 18977058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a test system to analyze different hip fracture osteosyntheses under simulated walking.
    Lenich A; Bachmeier S; Dendorfer S; Mayr E; Nerlich M; Füchtmeier B
    Biomed Tech (Berl); 2012 Apr; 57(2):113-9. PubMed ID: 22505494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical characterisation of osteosyntheses for proximal femur fractures: helical blade versus screw.
    Al-Munajjed AA; Hammer J; Mayr E; Nerlich M; Lenich A
    Stud Health Technol Inform; 2008; 133():1-10. PubMed ID: 18376008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A short plate compression screw with diagonal bolts--a biomechanical evaluation performed experimentally and by numerical computation.
    Peleg E; Mosheiff R; Liebergall M; Mattan Y
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):963-8. PubMed ID: 16893595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical comparison of two side plate fixation techniques in an unstable intertrochanteric osteotomy model: Sliding Hip Screw and Percutaneous Compression Plate.
    Krischak GD; Augat P; Beck A; Arand M; Baier B; Blakytny R; Gebhard F; Claes L
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1112-8. PubMed ID: 17900766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dynamic locking blade plate, a new implant for intracapsular hip fractures: biomechanical comparison with the sliding hip screw and Twin Hook.
    Roerdink WH; Aalsma AM; Nijenbanning G; van Walsum AD
    Injury; 2009 Mar; 40(3):283-7. PubMed ID: 19193375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimally invasive screw plates for surgery of unstable intertrochanteric femoral fractures: a biomechanical comparative study.
    Ropars M; Mitton D; Skalli W
    Clin Biomech (Bristol, Avon); 2008 Oct; 23(8):1012-7. PubMed ID: 18579266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Stress test and clinical application of the minimal-invasive dynamic hip screw].
    Tong SL; Chen JL; Lu WJ; Pan ZJ; Wang YJ
    Zhongguo Gu Shang; 2008 May; 21(5):334-6. PubMed ID: 19108453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helical blade vs telescoping lag screw for intertrochanteric fracture fixation.
    Schwarzkopf R; Takemoto RC; Kummer FJ; Egol KA
    Am J Orthop (Belle Mead NJ); 2011 Sep; 40(9):452-6. PubMed ID: 22022674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biodegradable meniscus fixations: a comparative biomechanical study].
    Seil R; Rupp S; Jurecka C; Georg T; Kohn D
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Feb; 89(1):35-43. PubMed ID: 12610434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biomechanical comparison of locked plate fixation with percutaneous insertion capability versus the angled blade plate in a subtrochanteric fracture gap model.
    Crist BD; Khalafi A; Hazelwood SJ; Lee MA
    J Orthop Trauma; 2009 Oct; 23(9):622-7. PubMed ID: 19897982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative techniques in trochanteric hip fracture surgery. Clinical and biomechanical studies on the Medoff sliding plate and the Twin hook.
    Olsson O
    Acta Orthop Scand Suppl; 2000 Oct; 295():1-31. PubMed ID: 11116961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locking plates increase the strength of dynamic hip screws.
    Jewell DP; Gheduzzi S; Mitchell MS; Miles AW
    Injury; 2008 Feb; 39(2):209-12. PubMed ID: 17880976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiographic and functional results of osteosynthesis using the proximal femoral nail antirotation (PFNA) in the treatment of unstable intertrochanteric femoral fractures.
    Sahin S; Ertürer E; Oztürk I; Toker S; Seçkin F; Akman S
    Acta Orthop Traumatol Turc; 2010; 44(2):127-34. PubMed ID: 20676015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical comparison of proximal locking plates and blade plates for the treatment of comminuted subtrochanteric femoral fractures.
    Floyd JC; O'Toole RV; Stall A; Forward DP; Nabili M; Shillingburg D; Hsieh A; Nascone JW
    J Orthop Trauma; 2009 Oct; 23(9):628-33. PubMed ID: 19897983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biomechanical study on fixation stability with twin hook or lag screw in artificial cancellous bone.
    Olsson O; Tanner KE; Ceder L; Ryd L
    Int Orthop; 2002; 26(6):349-55. PubMed ID: 12466867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Biomechanical study and clinical application of cannulated compression screws with across solid frame for intertrochanteric fractures].
    Zhang JZ; Sun TS; Liu Z; Liu SQ; Guo YZ; Ren JX
    Zhonghua Yi Xue Za Zhi; 2009 Dec; 89(47):3346-9. PubMed ID: 20193564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.