These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20831058)

  • 1. Contrast detection in fluid-saturated media with magnetic resonance poroelastography.
    Perriñez PR; Pattison AJ; Kennedy FE; Weaver JB; Paulsen KD
    Med Phys; 2010 Jul; 37(7):3518-26. PubMed ID: 20831058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic resonance poroelastography: an algorithm for estimating the mechanical properties of fluid-saturated soft tissues.
    Perriñez PR; Kennedy FE; Van Houten EE; Weaver JB; Paulsen KD
    IEEE Trans Med Imaging; 2010 Mar; 29(3):746-55. PubMed ID: 20199912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of soft poroelastic tissue in time-harmonic MR elastography.
    Perriñez PR; Kennedy FE; Van Houten EE; Weaver JB; Paulsen KD
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):598-608. PubMed ID: 19272864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of frequency- and direction-dependent elastic materials on linearly elastic MRE image reconstructions.
    Perreard IM; Pattison AJ; Doyley M; McGarry MD; Barani Z; Van Houten EE; Weaver JB; Paulsen KD
    Phys Med Biol; 2010 Nov; 55(22):6801-15. PubMed ID: 21030746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially-resolved hydraulic conductivity estimation via poroelastic magnetic resonance elastography.
    Pattison AJ; McGarry M; Weaver JB; Paulsen KD
    IEEE Trans Med Imaging; 2014 Jun; 33(6):1373-80. PubMed ID: 24771571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A numerical framework for interstitial fluid pressure imaging in poroelastic MRE.
    Tan L; McGarry MDJ; Van Houten EEW; Ji M; Solamen L; Zeng W; Weaver JB; Paulsen KD
    PLoS One; 2017; 12(6):e0178521. PubMed ID: 28586393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of fluid and solid shear wave fields and quantification of coupling density by magnetic resonance poroelastography.
    Lilaj L; Fischer T; Guo J; Braun J; Sack I; Hirsch S
    Magn Reson Med; 2021 Mar; 85(3):1655-1668. PubMed ID: 32902011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards an acoustic model-based poroelastic imaging method: II. experimental investigation.
    Berry GP; Bamber JC; Miller NR; Barbone PE; Bush NL; Armstrong CG
    Ultrasound Med Biol; 2006 Dec; 32(12):1869-85. PubMed ID: 17169699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phantom evaluations of nonlinear inversion MR elastography.
    Solamen LM; McGarry MD; Tan L; Weaver JB; Paulsen KD
    Phys Med Biol; 2018 Jul; 63(14):145021. PubMed ID: 29877194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of a Pixel-to-Pixel Curve-Fitting Method for Poroelastography Imaging.
    Galaz BA; Acevedo RH
    Ultrasound Med Biol; 2017 Jan; 43(1):309-322. PubMed ID: 27765386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear modulus decomposition algorithm in magnetic resonance elastography.
    Kwon OI; Park C; Nam HS; Woo EJ; Seo JK; Glaser KJ; Manduca A; Ehman RL
    IEEE Trans Med Imaging; 2009 Oct; 28(10):1526-33. PubMed ID: 19783495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous magnetic resonance and optical elastography acquisitions: Comparison of displacement images and shear modulus estimations using a single vibration source.
    Brinker ST; Kearney SP; Royston TJ; Klatt D
    J Mech Behav Biomed Mater; 2018 Aug; 84():135-144. PubMed ID: 29775815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR elastography at 1 Hz of gelatin phantoms using 3D or 4D acquisition.
    Gordon-Wylie SW; Solamen LM; McGarry MDJ; Zeng W; VanHouten E; Gilbert G; Weaver JB; Paulsen KD
    J Magn Reson; 2018 Nov; 296():112-120. PubMed ID: 30241018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dilatational and shear waves in poro-vioscoelastic media.
    Vena P; Royston TJ
    J Mech Behav Biomed Mater; 2019 Sep; 97():99-107. PubMed ID: 31103929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poroelastography: imaging the poroelastic properties of tissues.
    Konofagou EE; Harrigan TP; Ophir J; Krouskop TA
    Ultrasound Med Biol; 2001 Oct; 27(10):1387-97. PubMed ID: 11731052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The performance of steady-state harmonic magnetic resonance elastography when applied to viscoelastic materials.
    Doyley MM; Perreard I; Patterson AJ; Weaver JB; Paulsen KM
    Med Phys; 2010 Aug; 37(8):3970-9. PubMed ID: 20879559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniqueness of poroelastic and viscoelastic nonlinear inversion MR elastography at low frequencies.
    McGarry M; Van Houten E; Solamen L; Gordon-Wylie S; Weaver J; Paulsen K
    Phys Med Biol; 2019 Mar; 64(7):075006. PubMed ID: 30808018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative 3D magnetic resonance elastography: Comparison with dynamic mechanical analysis.
    Arunachalam SP; Rossman PJ; Arani A; Lake DS; Glaser KJ; Trzasko JD; Manduca A; McGee KP; Ehman RL; Araoz PA
    Magn Reson Med; 2017 Mar; 77(3):1184-1192. PubMed ID: 27016276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phantom evaluations of low frequency MR elastography.
    Solamen LM; Gordon-Wylie SW; McGarry MD; Weaver JB; Paulsen KD
    Phys Med Biol; 2019 Mar; 64(6):065010. PubMed ID: 30695755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance analysis of a new real-time elastographic time constant estimator.
    Nair SP; Yang X; Krouskop TA; Righetti R
    IEEE Trans Med Imaging; 2011 Feb; 30(2):497-511. PubMed ID: 20952333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.