BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 20831091)

  • 1. Designing passive MRI-safe implantable conducting leads with electrodes.
    Bottomley PA; Kumar A; Edelstein WA; Allen JM; Karmarkar PV
    Med Phys; 2010 Jul; 37(7):3828-43. PubMed ID: 20831091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of field strength on RF power deposition near conductive leads: A simulation study of SAR in DBS lead models during MRI at 1.5 T-10.5 T.
    Kazemivalipour E; Sadeghi-Tarakameh A; Keil B; Eryaman Y; Atalar E; Golestanirad L
    PLoS One; 2023; 18(1):e0280655. PubMed ID: 36701285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI-induced heating of selected thin wire metallic implants-- laboratory and computational studies-- findings and new questions raised.
    Bassen H; Kainz W; Mendoza G; Kellom T
    Minim Invasive Ther Allied Technol; 2006; 15(2):76-84. PubMed ID: 16754190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of capped and uncapped abandoned leads on the heating of an MR-conditional pacemaker implant.
    Mattei E; Gentili G; Censi F; Triventi M; Calcagnini G
    Magn Reson Med; 2015 Jan; 73(1):390-400. PubMed ID: 24436030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifying the trajectory of epicardial leads can substantially reduce MRI-induced RF heating in pediatric patients with a cardiac implantable electronic device at 1.5T.
    Jiang F; Bhusal B; Nguyen B; Monge M; Webster G; Kim D; Bonmassar G; Popsecu AR; Golestanirad L
    Magn Reson Med; 2023 Dec; 90(6):2510-2523. PubMed ID: 37526134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of electrodes and implantable pulse generator cases for the analysis of implant tip heating under MR imaging.
    Acikel V; Uslubas A; Atalar E
    Med Phys; 2015 Jul; 42(7):3922-31. PubMed ID: 26133593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Safety of localizing epilepsy monitoring intracranial electroencephalograph electrodes using MRI: radiofrequency-induced heating.
    Carmichael DW; Thornton JS; Rodionov R; Thornton R; McEvoy A; Allen PJ; Lemieux L
    J Magn Reson Imaging; 2008 Nov; 28(5):1233-44. PubMed ID: 18972332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A workflow for predicting temperature increase at the electrical contacts of deep brain stimulation electrodes undergoing MRI.
    Sadeghi-Tarakameh A; Zulkarnain NIH; He X; Atalar E; Harel N; Eryaman Y
    Magn Reson Med; 2022 Nov; 88(5):2311-2325. PubMed ID: 35781696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.
    Golestanirad L; Kirsch J; Bonmassar G; Downs S; Elahi B; Martin A; Iacono MI; Angelone LM; Keil B; Wald LL; Pilitsis J
    Neuroimage; 2019 Jan; 184():566-576. PubMed ID: 30243973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of coil dimensions and field polarization on RF heating inside a head phantom.
    Kangarlu A; Ibrahim TS; Shellock FG
    Magn Reson Imaging; 2005 Jan; 23(1):53-60. PubMed ID: 15733788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple design changes to wires to substantially reduce MRI-induced heating at 1.5 T: implications for implanted leads.
    Gray RW; Bibens WT; Shellock FG
    Magn Reson Imaging; 2005 Oct; 23(8):887-91. PubMed ID: 16275428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring local heating around an interventional MRI antenna with RF radiometry.
    Ertürk MA; El-Sharkawy AM; Bottomley PA
    Med Phys; 2015 Mar; 42(3):1411-23. PubMed ID: 25735295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radio-frequency induced heating of intra-cranial EEG electrodes: The more the colder?
    Lottner T; Reiss S; Rieger SB; Schuettler M; Fischer J; Bielak L; Özen AC; Bock M
    Neuroimage; 2022 Dec; 264():119691. PubMed ID: 36375783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the effect of resistive EEG electrodes and leads during 7 T MRI: simulation and temperature measurement studies.
    Angelone LM; Vasios CE; Wiggins G; Purdon PL; Bonmassar G
    Magn Reson Imaging; 2006 Jul; 24(6):801-12. PubMed ID: 16824975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Machine learning to predict RF heating of cardiac leads during magnetic resonance imaging at 1.5 T and 3 T: A simulation study.
    Chen X; Zheng C; Golestanirad L
    J Magn Reson; 2023 Apr; 349():107384. PubMed ID: 36842429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging.
    McElcheran CE; Yang B; Anderson KJ; Golenstani-Rad L; Graham SJ
    PLoS One; 2015; 10(8):e0134379. PubMed ID: 26237218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safety evaluation of a new setup for transcranial electric stimulation during magnetic resonance imaging.
    Gregersen F; Göksu C; Schaefers G; Xue R; Thielscher A; Hanson LG
    Brain Stimul; 2021; 14(3):488-497. PubMed ID: 33706007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of MRI RF electromagnetic field induced heating near leads of cochlear implants.
    Zeng Q; Wang Q; Zheng J; Kainz W; Chen J
    Phys Med Biol; 2018 Jul; 63(13):135020. PubMed ID: 29893289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerical and experimental study of RF shimming in the presence of hip prostheses using adaptive SAR at 3 T.
    Destruel A; Fuentes M; Weber E; O'Brien K; Jin J; Liu F; Barth M; Crozier S
    Magn Reson Med; 2019 Jun; 81(6):3826-3839. PubMed ID: 30803001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RF safety assessment of a bilateral four-channel transmit/receive 7 Tesla breast coil: SAR versus tissue temperature limits.
    Fiedler TM; Ladd ME; Bitz AK
    Med Phys; 2017 Jan; 44(1):143-157. PubMed ID: 28102957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.