These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effective chemiluminogenic systems based on acridinium esters bearing substituents of various electronic and steric properties. Zadykowicz B; Czechowska J; Ożóg A; Renkevich A; Krzymiński K Org Biomol Chem; 2016 Jan; 14(2):652-668. PubMed ID: 26549841 [TBL] [Abstract][Full Text] [Related]
3. Chemiluminogenic features of 10-methyl-9-(phenoxycarbonyl)acridinium trifluoromethanesulfonates alkyl substituted at the benzene ring in aqueous media. Krzymiński K; Ożóg A; Malecha P; Roshal AD; Wróblewska A; Zadykowicz B; Błażejowski J J Org Chem; 2011 Feb; 76(4):1072-85. PubMed ID: 21247186 [TBL] [Abstract][Full Text] [Related]
4. Fast and ultrafast spectroscopic investigation of tetracycline derivatives in organic and aqueous media. Carlotti B; Fuoco D; Elisei F Phys Chem Chem Phys; 2010 Dec; 12(48):15580-91. PubMed ID: 20661497 [TBL] [Abstract][Full Text] [Related]
5. 1H and 13C NMR spectra, structure and physicochemical features of phenyl acridine-9-carboxylates and 10-methyl-9-(phenoxycarbonyl)acridinium trifluoromethanesulphonates--alkyl substituted in the phenyl fragment. Krzymiński K; Malecha P; Zadykowicz B; Wróblewska A; Błażejowski J Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):401-9. PubMed ID: 21134782 [TBL] [Abstract][Full Text] [Related]
6. Spectral features of substituted 9-(phenoxycarbonyl)-acridines and their protonated and methylated cation derivatives. Krzymiński K; Roshal AD; Niziołek A Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul; 70(2):394-402. PubMed ID: 18083063 [TBL] [Abstract][Full Text] [Related]
7. Chemiluminescence accompanied by the reaction of acridinium ester and manganese (II). Ren L; Cui H Luminescence; 2014 Nov; 29(7):929-32. PubMed ID: 24677387 [TBL] [Abstract][Full Text] [Related]
8. On the use of acridinium indicators for the chemiluminescent determination of the total antioxidant capacity of dietary supplements. Krzymiński KK; Roshal AD; Rudnicki-Velasquez PB; Żamojć K Luminescence; 2019 Aug; 34(5):512-519. PubMed ID: 30972942 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of 9-(substituted phenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonates: Effects of the leaving group on chemiluminescent properties. Smith K; Holland AM; Woodhead JS; El-Hiti GA Luminescence; 2024 Jun; 39(6):e4794. PubMed ID: 38887175 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and properties of differently charged chemiluminescent acridinium ester labels. Natrajan A; Sharpe D Org Biomol Chem; 2013 Feb; 11(6):1026-39. PubMed ID: 23296263 [TBL] [Abstract][Full Text] [Related]
11. Determination of catechin in aqueous solution by chemiluminescence method. Lee JM; Karim MM; Lee SH J Fluoresc; 2005 Sep; 15(5):735-9. PubMed ID: 16341791 [TBL] [Abstract][Full Text] [Related]
12. Studies of visible oscillating chemiluminescence in luminol-H2O2-KSCN-CuSO4 system using (2-hydroxyethyl) trimethylammonium hydroxide. Samadi-Maybodi A; Akhoondi R Luminescence; 2008; 23(1):42-8. PubMed ID: 18175293 [TBL] [Abstract][Full Text] [Related]
13. Solvent Effect on the Chemiluminescence of Acridinium Thioester: A Computational Study. Pieńkos M; Zadykowicz B Chemphyschem; 2022 Aug; 23(15):e202200166. PubMed ID: 35607880 [TBL] [Abstract][Full Text] [Related]
14. Determination of L-ascorbic acid in human serum by chemiluminescence based on hydrogen peroxide-sodium hydrogen carbonate-CdSe/CdS quantum dots system. Chen H; Li R; Lin L; Guo G; Lin JM Talanta; 2010 Jun; 81(4-5):1688-96. PubMed ID: 20441959 [TBL] [Abstract][Full Text] [Related]
15. Synthesis, structure elucidation, and chemiluminescent activity of new 9-substituted 10-(ω-(succinimidyloxycarbonyl)alkyl)acridinium esters. Smith K; Mu X; Li Z; Holland AM; Woodhead JS; El-Hiti GA Luminescence; 2023 Apr; 38(4):487-496. PubMed ID: 36882939 [TBL] [Abstract][Full Text] [Related]
16. High stability and high efficiency chemiluminescent acridinium compounds obtained from 9-acridine carboxylic esters of hydroxamic and sulphohydroxamic acids. Renotte R; Sarlet G; Thunus L; Lejeune R Luminescence; 2000; 15(5):311-20. PubMed ID: 11038489 [TBL] [Abstract][Full Text] [Related]
17. Imidazolium-based ionic liquid derivative/Cu(II) complexes as efficient catalysts of the lucigenin chemiluminescence system and its application to H2O 2 and glucose detection. Khajvand T; Alijanpour O; Chaichi MJ; Vafaeezadeh M; Hashemi MM Anal Bioanal Chem; 2015 Aug; 407(20):6127-36. PubMed ID: 26163131 [TBL] [Abstract][Full Text] [Related]
19. Enhancement effect on the chemiluminescence of acridinium esters under neutral conditions. Nakazono M; Nanbu S Luminescence; 2018 Mar; 33(2):345-348. PubMed ID: 29115007 [TBL] [Abstract][Full Text] [Related]
20. The influence of organic sample solvents on the separation efficiency of basic compounds under strong cation exchange mode. Long Z; Yu D; Liu Y; Du N; Tao Y; Mei L; Guo Z; Liang X Anal Chim Acta; 2015 May; 872():77-83. PubMed ID: 25892072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]