These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 2083131)

  • 1. [Properties of afferent connexions to the spinocerebellar tracts].
    Hirai N
    No To Shinkei; 1990 Dec; 42(12):1141-53. PubMed ID: 2083131
    [No Abstract]   [Full Text] [Related]  

  • 2. Spinocerebellar projections in the pigeon with special reference to the neck region of the body.
    Necker R
    J Comp Neurol; 2001 Jan; 429(3):403-18. PubMed ID: 11116228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of initial axon collaterals of cells of origin of the ventral spinocerebellar tract in the cat.
    Bras H; Cavallari P; Jankowska E
    J Comp Neurol; 1988 Jul; 273(4):584-92. PubMed ID: 2463285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of dorsal spinocerebellar tract neurons to signals from muscle spindle afferents.
    Grüsser OJ; Kröller J
    Prog Brain Res; 1979; 50():91-104. PubMed ID: 162160
    [No Abstract]   [Full Text] [Related]  

  • 5. [Anatomy of ascending sensory pathways in the spinal cord].
    Mizuno N
    No To Shinkei; 1990 Dec; 42(12):1125-40. PubMed ID: 2083130
    [No Abstract]   [Full Text] [Related]  

  • 6. Patterns of connectivity in the vestibular nuclei.
    Büttner-Ennever JA
    Ann N Y Acad Sci; 1992 May; 656():363-78. PubMed ID: 1599156
    [No Abstract]   [Full Text] [Related]  

  • 7. A novel spinal pathway and other connections to the spinocerebellum in the pigeon.
    Necker R
    Brain Res Bull; 1991 Nov; 27(5):581-6. PubMed ID: 1721857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Afferent connections of the cerebellum in various types of reptiles.
    Bangma GC; ten Donkelaar H
    J Comp Neurol; 1982 May; 207(3):255-73. PubMed ID: 7107986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Peroxidase study of the cerebellar connections in the frog Rana temporaria].
    Khodorkovskaia NA
    Zh Evol Biokhim Fiziol; 1983; 19(5):517-23. PubMed ID: 6359788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinocerebellar projections to lobules I and II of the anterior lobe in the cat, as studied by retrograde transport of horseradish peroxidase.
    Matsushita M; Okado N
    J Comp Neurol; 1981 Apr; 197(3):411-24. PubMed ID: 6163798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebellar Golgi cells in the rat receive multimodal convergent peripheral inputs via the lateral funiculus of the spinal cord.
    Holtzman T; Mostofi A; Phuah CL; Edgley SA
    J Physiol; 2006 Nov; 577(Pt 1):69-80. PubMed ID: 16916906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Participation of the direct spino- and cuneocerebellar tracts in the formation of potentials evoked in the cerebellum on stimulation of the nerves].
    Fukson OI
    Fiziol Zh SSSR Im I M Sechenova; 1973 Sep; 59(9):1348-54. PubMed ID: 4363877
    [No Abstract]   [Full Text] [Related]  

  • 13. Nucleus z in the rat: spinal afferents from collaterals of dorsal spinocerebellar tract neurons.
    Low JS; Mantle-St John LA; Tracey DJ
    J Comp Neurol; 1986 Jan; 243(4):510-26. PubMed ID: 3950083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinocerebellar projections to lobules III to V of the anterior lobe in the cat, as studied by retrograde transport of horseradish peroxidase.
    Matsushita M; Hosoya Y
    J Comp Neurol; 1982 Jun; 208(2):127-43. PubMed ID: 6181103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of spinocerebellar afferents in the clawed toad, Xenopus laevis.
    van der Linden JA; ten Donkelaar HJ; de Boer-van Huizen R
    J Comp Neurol; 1988 Nov; 277(1):41-52. PubMed ID: 3198795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ascending and descending spinal cord tracts.
    Mathewson M
    Crit Care Nurse; 1985; 5(5):10-4. PubMed ID: 3851709
    [No Abstract]   [Full Text] [Related]  

  • 17. [Vestibular projections of cervical sensory fibers in the frog].
    Suárez C; Barcia MC; Tolivia J
    Acta Otorrinolaringol Esp; 1988; 39(3):151-7. PubMed ID: 3273543
    [No Abstract]   [Full Text] [Related]  

  • 18. Paths, elongation, and projections of ascending chick embryonic spinal commissural neurons after crossing the floor plate.
    Arakawa T; Iwashita M; Matsuzaki F; Suzuki T; Yamamoto T
    Brain Res; 2008 Aug; 1223():25-33. PubMed ID: 18590908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Golgi tendon organ. Properties of the receptor and reflex action of impulses arising from tendon organs.
    Proske U
    Int Rev Physiol; 1981; 25():127-71. PubMed ID: 6259074
    [No Abstract]   [Full Text] [Related]  

  • 20. Segregation of muscle and cutaneous afferent fibre terminals in the brachial spinal cord of the frog.
    Székely G; Antal M
    J Hirnforsch; 1984; 25(6):671-5. PubMed ID: 6335516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.