These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 20831336)

  • 1. Calculations of the binding affinities of protein-protein complexes with the fast multipole method.
    Kim B; Song J; Song X
    J Chem Phys; 2010 Sep; 133(9):095101. PubMed ID: 20831336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water molecules participate in proteinase-inhibitor interactions: crystal structures of Leu18, Ala18, and Gly18 variants of turkey ovomucoid inhibitor third domain complexed with Streptomyces griseus proteinase B.
    Huang K; Lu W; Anderson S; Laskowski M; James MN
    Protein Sci; 1995 Oct; 4(10):1985-97. PubMed ID: 8535235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculations of the second virial coefficients of protein solutions with an extended fast multipole method.
    Kim B; Song X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011915. PubMed ID: 21405721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Affinity and specificity of serine endopeptidase-protein inhibitor interactions. Empirical free energy calculations based on X-ray crystallographic structures.
    Krystek S; Stouch T; Novotny J
    J Mol Biol; 1993 Dec; 234(3):661-79. PubMed ID: 8254666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How optimal are the binding energetics of barnase and barstar?
    Wang T; Tomic S; Gabdoulline RR; Wade RC
    Biophys J; 2004 Sep; 87(3):1618-30. PubMed ID: 15345541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of peptide bonds to inhibitor-protease binding: crystal structures of the turkey ovomucoid third domain backbone variants OMTKY3-Pro18I and OMTKY3-psi[COO]-Leu18I in complex with Streptomyces griseus proteinase B (SGPB) and the structure of the free inhibitor, OMTKY-3-psi[CH2NH2+]-Asp19I.
    Bateman KS; Huang K; Anderson S; Lu W; Qasim MA; Laskowski M; James MN
    J Mol Biol; 2001 Jan; 305(4):839-49. PubMed ID: 11162096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic solvation parameters in the analysis of protein-protein docking results.
    Cummings MD; Hart TN; Read RJ
    Protein Sci; 1995 Oct; 4(10):2087-99. PubMed ID: 8535245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the molecular design of protein interaction sites with molecular dynamics simulations and free energy calculations.
    Liang S; Li L; Hsu WL; Pilcher MN; Uversky V; Zhou Y; Dunker AK; Meroueh SO
    Biochemistry; 2009 Jan; 48(2):399-414. PubMed ID: 19113835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A continuum model for protein-protein interactions: application to the docking problem.
    Jackson RM; Sternberg MJ
    J Mol Biol; 1995 Jul; 250(2):258-75. PubMed ID: 7541840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic criterion for the conformation of P1 residues of substrates and of inhibitors in complexes with serine proteinases.
    Qasim MA; Lu SM; Ding J; Bateman KS; James MN; Anderson S; Song J; Markley JL; Ganz PJ; Saunders CW; Laskowski M
    Biochemistry; 1999 Jun; 38(22):7142-50. PubMed ID: 10353824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of protein-protein association energies by free energy perturbation calculations.
    Brandsdal BO; Smalås AO
    Protein Eng; 2000 Apr; 13(4):239-45. PubMed ID: 10810154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The van der Waals interaction between protein molecules in an electrolyte solution.
    Song X; Zhao X
    J Chem Phys; 2004 Jan; 120(4):2005-9. PubMed ID: 15268335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico screening of mutational effects on enzyme-proteic inhibitor affinity: a docking-based approach.
    Dell'Orco D; De Benedetti PG; Fanelli F
    BMC Struct Biol; 2007 Jun; 7():37. PubMed ID: 17559675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic interactions control zymogen activation in the trypsin family of serine proteases.
    Hedstrom L; Lin TY; Fast W
    Biochemistry; 1996 Apr; 35(14):4515-23. PubMed ID: 8605201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational analysis of binding of P1 variants to trypsin.
    Brandsdal BO; Aqvist J; Smalås AO
    Protein Sci; 2001 Aug; 10(8):1584-95. PubMed ID: 11468355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of sequence-reactivity space for protein-protein interactions.
    Li J; Yi Z; Laskowski MC; Laskowski M; Bailey-Kellogg C
    Proteins; 2005 Feb; 58(3):661-71. PubMed ID: 15624216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Interaction of ovomucoid from duck egg white with serine proteinases].
    Vanchugova LV; Valueva TA; Romashkin VI; Rozenfel'd MA; Valuev LI
    Biokhimiia; 1988 Sep; 53(9):1455-61. PubMed ID: 3203109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the effect of point mutations at protein-protein interfaces with free energy calculations.
    Almlöf M; Aqvist J; Smalås AO; Brandsdal BO
    Biophys J; 2006 Jan; 90(2):433-42. PubMed ID: 16272444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase.
    Archontis G; Simonson T; Karplus M
    J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of the interaction of barnase and barstar: changes in free energy versus changes in enthalpy on mutation.
    Frisch C; Schreiber G; Johnson CM; Fersht AR
    J Mol Biol; 1997 Apr; 267(3):696-706. PubMed ID: 9126847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.