These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 20831339)

  • 1. Puckering free energy of pyranoses: A NMR and metadynamics-umbrella sampling investigation.
    Autieri E; Sega M; Pederiva F; Guella G
    J Chem Phys; 2010 Sep; 133(9):095104. PubMed ID: 20831339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers.
    Hansen HS; Hünenberger PH
    J Comput Chem; 2011 Apr; 32(6):998-1032. PubMed ID: 21387332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation, dynamics, solvation and relative stabilities of selected beta-hexopyranoses in water: a molecular dynamics study with the GROMOS 45A4 force field.
    Kräutler V; Müller M; Hünenberger PH
    Carbohydr Res; 2007 Oct; 342(14):2097-124. PubMed ID: 17573054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling of beta-D-glucopyranose ring distortion in different force fields: a metadynamics study.
    Spiwok V; Králová B; Tvaroska I
    Carbohydr Res; 2010 Feb; 345(4):530-7. PubMed ID: 20053394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the calculation of puckering free energy surfaces.
    Sega M; Autieri E; Pederiva F
    J Chem Phys; 2009 Jun; 130(22):225102. PubMed ID: 19530791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the local elevation method to construct optimized umbrella sampling potentials: calculation of the relative free energies and interconversion barriers of glucopyranose ring conformers in water.
    Hansen HS; Hünenberger PH
    J Comput Chem; 2010 Jan; 31(1):1-23. PubMed ID: 19412904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyranose ring puckering in aldopentoses, ketohexoses and deoxyaldohexoses. A molecular dynamics study.
    Panczyk K; Plazinski W
    Carbohydr Res; 2018 Jan; 455():62-70. PubMed ID: 29175656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can current force fields reproduce ring puckering in 2-O-sulfo-alpha-L-iduronic acid? A molecular dynamics simulation study.
    Gandhi NS; Mancera RL
    Carbohydr Res; 2010 Mar; 345(5):689-95. PubMed ID: 20097328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociation of carbonic acid: gas phase energetics and mechanism from ab initio metadynamics simulations.
    Kumar PP; Kalinichev AG; Kirkpatrick RJ
    J Chem Phys; 2007 May; 126(20):204315. PubMed ID: 17552770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The conformational free energy landscape of beta-D-glucopyranose. Implications for substrate preactivation in beta-glucoside hydrolases.
    Biarnés X; Ardèvol A; Planas A; Rovira C; Laio A; Parrinello M
    J Am Chem Soc; 2007 Sep; 129(35):10686-93. PubMed ID: 17696342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling.
    Perić-Hassler L; Hansen HS; Baron R; Hünenberger PH
    Carbohydr Res; 2010 Aug; 345(12):1781-801. PubMed ID: 20576257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved nucleic acid parameter set for the GROMOS force field.
    Soares TA; Hünenberger PH; Kastenholz MA; Kräutler V; Lenz T; Lins RD; Oostenbrink C; van Gunsteren WF
    J Comput Chem; 2005 May; 26(7):725-37. PubMed ID: 15770662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic characteristics of conformational changes in the hexopyranose rings.
    Plazinski W; Drach M
    Carbohydr Res; 2015 Oct; 416():41-50. PubMed ID: 26343326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new GROMOS force field for hexopyranose-based carbohydrates.
    Lins RD; Hünenberger PH
    J Comput Chem; 2005 Oct; 26(13):1400-12. PubMed ID: 16035088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energy based populations of interconverting microstates of a cyclic peptide lead to the experimental NMR data.
    Baysal C; Meirovitch H
    Biopolymers; 1999 Sep; 50(3):329-44. PubMed ID: 10397793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spectroscopic study of nicotine analogue 2-phenylpyrrolidine (PPD) using resonant two-photon ionization (R2PI), microwave, and 2D NMR techniques.
    Martin DE; Robertson EG; MacLellan JG; Godfrey PD; Thompson CD; Morrison RJ
    J Am Chem Soc; 2009 Feb; 131(7):2638-46. PubMed ID: 19193006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GROMOS 53A6GLYC, an Improved GROMOS Force Field for Hexopyranose-Based Carbohydrates.
    Pol-Fachin L; Rusu VH; Verli H; Lins RD
    J Chem Theory Comput; 2012 Nov; 8(11):4681-90. PubMed ID: 26605624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of the pyranose ring interconversion path of alpha-L-idose calculated using density functional theory.
    Kurihara Y; Ueda K
    Carbohydr Res; 2006 Nov; 341(15):2565-74. PubMed ID: 16920091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metadynamics as a tool for mapping the conformational and free-energy space of peptides--the alanine dipeptide case study.
    Vymetal J; Vondrásek J
    J Phys Chem B; 2010 Apr; 114(16):5632-42. PubMed ID: 20361773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6.
    Oostenbrink C; Villa A; Mark AE; van Gunsteren WF
    J Comput Chem; 2004 Oct; 25(13):1656-76. PubMed ID: 15264259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.