These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 20831408)

  • 1. Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition.
    Schellenberg B; Ramel C; Dudler R
    Mol Plant Microbe Interact; 2010 Oct; 23(10):1287-93. PubMed ID: 20831408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabidopsis YELLOW STRIPE-LIKE7 (YSL7) and YSL8 transporters mediate uptake of Pseudomonas virulence factor syringolin A into plant cells.
    Hofstetter SS; Dudnik A; Widmer H; Dudler R
    Mol Plant Microbe Interact; 2013 Nov; 26(11):1302-11. PubMed ID: 23945001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism.
    Groll M; Schellenberg B; Bachmann AS; Archer CR; Huber R; Powell TK; Lindow S; Kaiser M; Dudler R
    Nature; 2008 Apr; 452(7188):755-8. PubMed ID: 18401409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301 D-R.
    Amrein H; Makart S; Granado J; Shakya R; Schneider-Pokorny J; Dudler R
    Mol Plant Microbe Interact; 2004 Jan; 17(1):90-7. PubMed ID: 14714872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of biosynthesis of syringolin A, a Pseudomonas syringae virulence factor targeting the host proteasome.
    Ramel C; Baechler N; Hildbrand M; Meyer M; Schädeli D; Dudler R
    Mol Plant Microbe Interact; 2012 Sep; 25(9):1198-208. PubMed ID: 22852810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of the proteasome inhibitor syringolin A: the ureido group joining two amino acids originates from bicarbonate.
    Ramel C; Tobler M; Meyer M; Bigler L; Ebert MO; Schellenberg B; Dudler R
    BMC Biochem; 2009 Oct; 10():26. PubMed ID: 19863801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virulence determinants of Pseudomonas syringae strains isolated from grasses in the context of a small type III effector repertoire.
    Dudnik A; Dudler R
    BMC Microbiol; 2014 Dec; 14():304. PubMed ID: 25472590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a novel Pseudomonas syringae Psy61 effector with virulence and avirulence functions by a HrpL-dependent promoter-trap assay.
    Losada L; Sussan T; Pak K; Zeyad S; Rozenbaum I; Hutcheson SW
    Mol Plant Microbe Interact; 2004 Mar; 17(3):254-62. PubMed ID: 15000392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudomonas syringae pv. syringae uses proteasome inhibitor syringolin A to colonize from wound infection sites.
    Misas-Villamil JC; Kolodziejek I; Crabill E; Kaschani F; Niessen S; Shindo T; Kaiser M; Alfano JR; van der Hoorn RA
    PLoS Pathog; 2013 Mar; 9(3):e1003281. PubMed ID: 23555272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulation of host proteasomes as a virulence mechanism of plant pathogens.
    Dudler R
    Annu Rev Phytopathol; 2013; 51():521-42. PubMed ID: 23725468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New checkpoints in stomatal defense.
    Montillet JL; Hirt H
    Trends Plant Sci; 2013 Jun; 18(6):295-7. PubMed ID: 23582764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a novel, defense-related Arabidopsis mutant, cir1, isolated by luciferase imaging.
    Murray SL; Thomson C; Chini A; Read ND; Loake GJ
    Mol Plant Microbe Interact; 2002 Jun; 15(6):557-66. PubMed ID: 12059104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by Pseudomonas Type III Effectors.
    Üstün S; Sheikh A; Gimenez-Ibanez S; Jones A; Ntoukakis V; Börnke F
    Plant Physiol; 2016 Nov; 172(3):1941-1958. PubMed ID: 27613851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae.
    Laurie-Berry N; Joardar V; Street IH; Kunkel BN
    Mol Plant Microbe Interact; 2006 Jul; 19(7):789-800. PubMed ID: 16838791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis.
    Mishina TE; Zeier J
    Plant J; 2007 May; 50(3):500-13. PubMed ID: 17419843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterologous expression and antitumor activity analysis of syringolin from Pseudomonas syringae pv. syringae B728a.
    Huang F; Tang J; He L; Ding X; Huang S; Zhang Y; Sun Y; Xia L
    Microb Cell Fact; 2018 Feb; 17(1):31. PubMed ID: 29482589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial non-host resistance: interactions of Arabidopsis with non-adapted Pseudomonas syringae strains.
    Mishina TE; Zeier J
    Physiol Plant; 2007 Nov; 131(3):448-61. PubMed ID: 18251883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudomonas syringae pv. phaseolicola effector HopF1 inhibits pathogen-associated molecular pattern-triggered immunity in a RIN4-independent manner in common bean (Phaseolus vulgaris).
    Hou S; Mu R; Ma G; Xu X; Zhang C; Yang Y; Wu D
    FEMS Microbiol Lett; 2011 Oct; 323(1):35-43. PubMed ID: 22092678
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    McGrane R; Beattie GA
    mBio; 2017 Oct; 8(5):. PubMed ID: 29066541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of a RING-HC protein from rice improves resistance to Pseudomonas syringae pv. tomato DC3000 in transgenic Arabidopsis thaliana.
    Cheung MY; Zeng NY; Tong SW; Li FW; Zhao KJ; Zhang Q; Sun SS; Lam HM
    J Exp Bot; 2007; 58(15-16):4147-59. PubMed ID: 18182423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.