BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 20831804)

  • 1. Identification of response-modulated genetic interactions by sensitivity-based epistatic analysis.
    Batenchuk C; Tepliakova L; Kaern M
    BMC Genomics; 2010 Sep; 11():493. PubMed ID: 20831804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epistatic interaction maps relative to multiple metabolic phenotypes.
    Snitkin ES; Segrè D
    PLoS Genet; 2011 Feb; 7(2):e1001294. PubMed ID: 21347328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks.
    He X; Qian W; Wang Z; Li Y; Zhang J
    Nat Genet; 2010 Mar; 42(3):272-6. PubMed ID: 20101242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular epistasis and the compensatory evolution of gene deletion mutants.
    Rojas Echenique JI; Kryazhimskiy S; Nguyen Ba AN; Desai MM
    PLoS Genet; 2019 Feb; 15(2):e1007958. PubMed ID: 30768593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abundant gene-by-environment interactions in gene expression reaction norms to copper within Saccharomyces cerevisiae.
    Hodgins-Davis A; Adomas AB; Warringer J; Townsend JP
    Genome Biol Evol; 2012; 4(11):1061-79. PubMed ID: 23019066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rewiring of genetic networks in response to DNA damage.
    Bandyopadhyay S; Mehta M; Kuo D; Sung MK; Chuang R; Jaehnig EJ; Bodenmiller B; Licon K; Copeland W; Shales M; Fiedler D; Dutkowski J; Guénolé A; van Attikum H; Shokat KM; Kolodner RD; Huh WK; Aebersold R; Keogh MC; Krogan NJ; Ideker T
    Science; 2010 Dec; 330(6009):1385-9. PubMed ID: 21127252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical-genetic approaches for exploring the mode of action of natural products.
    Lopez A; Parsons AB; Nislow C; Giaever G; Boone C
    Prog Drug Res; 2008; 66():237, 239-71. PubMed ID: 18416308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recursive expectation-maximization clustering: a method for identifying buffering mechanisms composed of phenomic modules.
    Guo J; Tian D; McKinney BA; Hartman JL
    Chaos; 2010 Jun; 20(2):026103. PubMed ID: 20590332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyzing the dose-dependence of the Saccharomyces cerevisiae global transcriptional response to methyl methanesulfonate and ionizing radiation.
    Benton MG; Somasundaram S; Glasner JD; Palecek SP
    BMC Genomics; 2006 Dec; 7():305. PubMed ID: 17140446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetics. The DNA damage road map.
    Friedman N; Schuldiner M
    Science; 2010 Dec; 330(6009):1327-8. PubMed ID: 21127235
    [No Abstract]   [Full Text] [Related]  

  • 11. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli.
    Babu M; Gagarinova A; Emili A
    Methods Mol Biol; 2011; 781():99-126. PubMed ID: 21877280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p.
    Moxley JF; Jewett MC; Antoniewicz MR; Villas-Boas SG; Alper H; Wheeler RT; Tong L; Hinnebusch AG; Ideker T; Nielsen J; Stephanopoulos G
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6477-82. PubMed ID: 19346491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robustness and evolvability in natural chemical resistance: identification of novel systems properties, biochemical mechanisms and regulatory interactions.
    Venancio TM; Balaji S; Geetha S; Aravind L
    Mol Biosyst; 2010 Aug; 6(8):1475-91. PubMed ID: 20517567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trigenic Synthetic Genetic Array (τ-SGA) Technique for Complex Interaction Analysis.
    Kuzmin E; Andrews BJ; Boone C
    Methods Mol Biol; 2021; 2212():377-400. PubMed ID: 33733368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epistatic relationships reveal the functional organization of yeast transcription factors.
    Zheng J; Benschop JJ; Shales M; Kemmeren P; Greenblatt J; Cagney G; Holstege F; Li H; Krogan NJ
    Mol Syst Biol; 2010 Oct; 6():420. PubMed ID: 20959818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UBC13, a DNA-damage-inducible gene, is a member of the error-free postreplication repair pathway in Saccharomyces cerevisiae.
    Brusky J; Zhu Y; Xiao W
    Curr Genet; 2000 Mar; 37(3):168-74. PubMed ID: 10794173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conditional genetic interactions of RTT107, SLX4, and HRQ1 reveal dynamic networks upon DNA damage in S. cerevisiae.
    Leung GP; Aristizabal MJ; Krogan NJ; Kobor MS
    G3 (Bethesda); 2014 Apr; 4(6):1059-69. PubMed ID: 24700328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variance in epistasis links gene regulation and evolutionary rate in the yeast genetic interaction network.
    Fierst JL; Phillips PC
    Genome Biol Evol; 2012; 4(11):1080-7. PubMed ID: 23019067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widespread Genetic Incompatibilities between First-Step Mutations during Parallel Adaptation of Saccharomyces cerevisiae to a Common Environment.
    Ono J; Gerstein AC; Otto SP
    PLoS Biol; 2017 Jan; 15(1):e1002591. PubMed ID: 28114370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.
    Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I
    Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.